
APN 鉛フリー基準「87S70195Y-AB」に適合 APN Pb-free soldering parts design standards conform with "87S 70195Y-AB"

納入仕様書 SPECIFICATION

ALPINE ELECTRONICS(CHINA)CO.,LTD

全ページ数 29P Total namber of pages. 29P

ALPINE ELECTRONICS(CHINA)CO.,LTD

RECIPIENT

SPECIFICATIONS

ALPINE P/N : 51-29314Z01-A

 PRODUCT
 X1B000271A00200

MODEL: RA8900CE

Country of origin : Malaysia

SPEC. No. : Q14-055-0B

DATE: May. 30. 2014

SEIKO EPSON CORPORATION

8548 Naka-minowa Minowa-machi Kamiina-gun Nagano-ken 399-4696 Japan

CHECKED_	<u> T. Kuwahara</u> Takuo Kuwahara	7 TD Production Engineering Department Manager
CHECKED_	S. Takemuva Satoru Takemura	/ TD Production Engineering Department Staff
CHECKED_	Yasushi Hiraizumi	/ TD·CS Quality Assurance Department Manager
PREPARED _	7. Hurumiyawa Takashi kurumizawa	/ TD·CS Quality Assurance Department Senior Staff

Update History

Total:29 Pages

Date	Page	Item	Current	Update

Contents

Update 1	History	2				
Contents		3				
0 0	SPECIFICATIONS					
[1]	Block diagram	5				
[2]	Register table	5-6				
[3]	Terminal description	7				
[4]	External Dimensions / Marking Layout	8				
[5]	Absolute maximum ratings	9				
[6]	Recommended Operating Conditions	9				
[7]	Frequency characteristics	9				
[8]	Electrical characteristics	10-12				
[9]	Environmental and mechanical characteristics	13				
[10]	How to use	14-15				
[11]	Note	16				
Alpine's	requirement of heatproof condition for soldering	17-19				
TAPING	SPECIFICATION	20-24				
Structure	diagram	25				
Reliabili	Reliability test data					
Reliabili	y test data Failure rate	28				
Reel ma	rking label	29				

SPECIFICATION

1. Application

1)This document is applicable to the real time clock module RA8900CE that are delivered to ALPINE ELECTRONICS(CHINA)CO.,LTD from Seiko Epson Corp.

2)RoHS compliant

RA8900CE contains lead in high melting type solder which is exempted in RoHS directive.

- 3)This Product supplied (and any technical information furnished, if any) by Seiko Epson Corporation shall not be used for the development and manufacture of weapon of mass destruction or for other military purposes. Making available such products and technology to any third party who may use such products or technologies for the said purposes are also prohibited.
- 4)This product listed here is designed as components or parts for electronics equipment in general consumer use. We do not expect that any of these products would be incorporated or otherwise used as a component or part forthe equipment, which requires an systems, and medical equipment, the functional purpose of which is to keep extra high reliability, such as satellite, rocket and other space life.

This RA8900CE is authorized for Audio equipment for automobile only.

2. Model

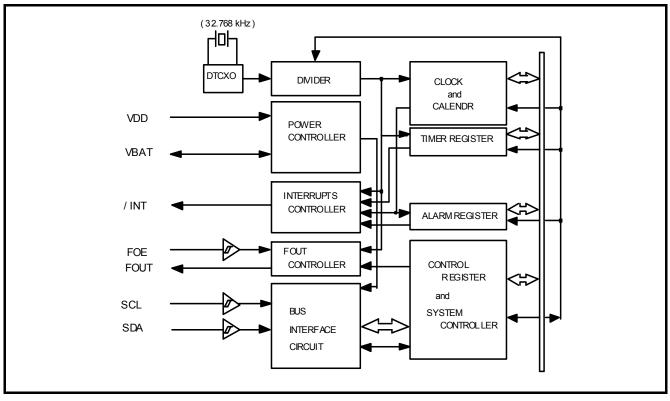
The model is RA8900CE.

3. Packing

It is subject to the packing standard of Seiko Epson Corp.

4. Warranty

Defective parts which are originated by us are replaced free of charge in case defects are found within 12 Months after delivery.


5. Amendment and abolishment

Amendment and/or abolishment of this specification are subject to the agreement of both parties.

6. Original Production Country / Total Quality Assurance

Country	Product Factory Name	Total Quality Assurance
Malaysia	EPMY	EPMY

1. Block Diagram

2. Description of Registers

- 2.1. Write / Read and Bank Select Address 00h to 0Fh : Basic time and calendar register ... Compatible with RA8803. Address 10h to 1Fh : Extension register
- 2.2. Register table (Basic time and calendar register)

Address	Function	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read	Write
00	SEC	0	40	20	10	8	4	2	1	Р	Р
01	MIN	0	40	20	10	8	4	2	1	Р	Р
02	HOUR	0	0	20	10	8	4	2	1	Р	Р
03	WEEK	0	6	5	4	3	2	1	0	Р	Р
04	DAY	0	0	20	10	8	4	2	1	Р	Р
05	MONTH	0	0	0	10	8	4	2	1	Р	Р
06	YEAR	80	40	20	10	8	4	2	1	Р	Р
07	RAM	•	٠	•	•	•	•	•	•	Р	Р
08	MIN Alarm	AE	40	20	10	8	4	2	1	Р	Р
09	HOUR Alarm	AE	٠	20	10	8	4	2	1	Р	Р
0A	WEEK Alarm	AE	6	5	4	3	2	1	0	Р	Р
UA	DAY Alarm	AL	٠	20	10	8	4	2	1	Г	Г
0B	Timer Counter 0	128	64	32	16	8	4	2	1	Р	Р
0C	Timer Counter 1	•	٠	٠	•	2048	1024	512	256	Р	Р
0D	Extension Register	TEST	WADA	USEL	TE	FSEL1	FSEL0	TSEL1	TSEL0	Р	Р
0E	Flag Register	0	0	UF	TF	AF	0	VLF	VDET	Р	Р
0F	Control Register	CSEL1	CSEL0	UIE	TIE	AIE	0	0	RESET	Р	Р

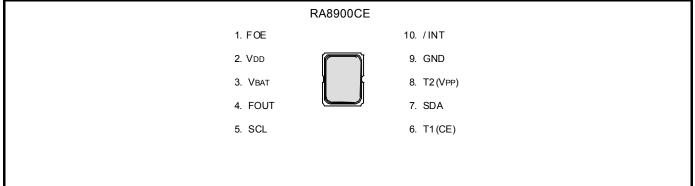
P : Possible , I : Impossible

Address	Function	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Read	Write
10	SEC	0	40	20	10	8	4	2	1	Р	Р
11	MIN	0	40	20	10	8	4	2	1	Р	Р
12	HOUR	0	0	20	10	8	4	2	1	Р	Р
13	WEEK	0	6	5	4	3	2	1	0	Р	Р
14	DAY	0	0	20	10	8	4	2	1	Р	Р
15	MONTH	0	ο	ο	10	8	4	2	1	Р	Р
16	YEAR	80	40	20	10	8	4	2	1	Р	Р
17	TEMP	128	64	32	16	8	4	2	1	Р	I
18	Backup Function	0	0	0	0	VDET OFF	SWOFF	BKSMP1	BKSMP0	Р	Р
19	Not use	0	0	0	0	0	0	0	0	Р	I
1A	Not use	0	0	0	0	0	0	0	0	Р	Ι
1B	Timer Counter 0	128	64	32	16	8	4	2	1	Р	Р
1C	Timer Counter 1	٠	•	•	٠	2048	1024	512	256	Р	Р
1D	Extension Register	TEST	WADA	USEL	TE	FSEL1	FSEL0	TSEL1	TSEL0	Р	Р
1E	Flag Register	0	0	UF	TF	AF	0	VLF	VDET	Р	Р
1F	Control Register	CSEL1	CSEL0	UIE	TIE	AIE	0	0	RESET	Р	Р

2.3. Register table (Extension register)

P : Possible , I : Impossible

Note When after the initial power-up (from 0 V) or when the result of read out the VLF bit is "1", initialize all registers, before using the module. Be sure to avoid entering incorrect date and time data, as clock operations are not guaranteed when the data or time data is incorrect.

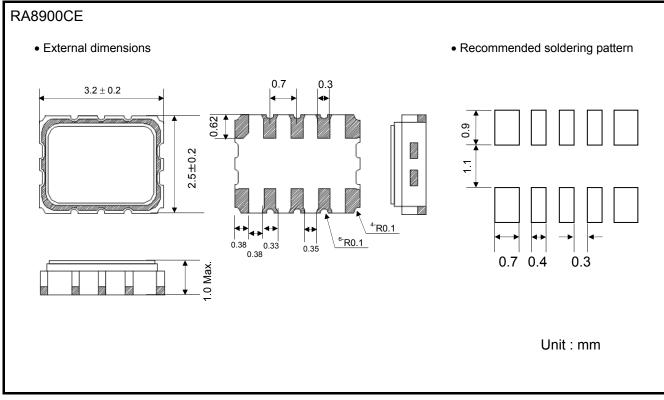

*1) During the initial power-up, the TEST bit is reset to "0" and the VLF bit is set to "1".
 * At this point, all other register values are undefined, so be sure to perform a reset before using the module.

*2) Only a "0" can be written to the UF, TF, AF, VLF, or VDET bit.

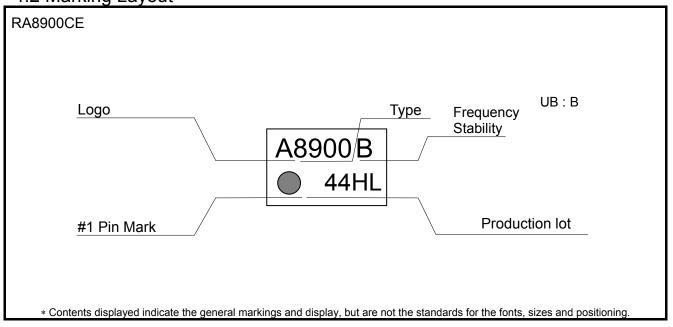
- *3) Any bit marked with "o" should be used with a value of "0" after initialization.
- *4) Any bit marked with "•" is a RAM bit that can be used to read or write any data.
- *5) The TEST bit is used by the manufacturer for testing. Be sure to set "0" for this bit when writing.

3. Terminal description

3.1. Terminal connections


3.2. Pin Functions

Signal name	I/O	Function
SDA	I/O	This pin's signal is used for input and output of address, data, and ACK bits, synchronized with the serial clock used for I ² C communications. Since the SDA pin is an N-ch open drain pin during output, be sure to connect a suitable pull-up resistance relative to the signal line capacity.
SCL	Input	This is the serial clock input pin for I ² C Bus communications.
FOUT	Output	This is the C-MOS output pin with output control provided via the FOE pin. When FOE = "H" (high level), this pin outputs a 32.768 kHz signal. When output is stopped, the FOUT pin = "Hi-Z"(high impedance).
FOE	Input	This is an input pin used to control the output mode of the FOUT pin. When this pin's level is high, the FOUT pin is in output mode. When it is low, output via the FOUT pin is stopped.
/ INT	Output	This pins is used to output alarm signals, timer signals, time update signals, and other signals. This pin is an open drain pin.
VBAT	_	This is a power supply pin for backup battery. This is a pin to connect a large-capacity capacitor, a secondary battery. When the battery switchover function does not need, VBAT must be connected to VDD.
Vdd	-	This pin is connected to a positive power supply.
GND	-	This pin is connected to a ground.
TEST	Input	Use by the manufacture for testing. (Do not connect externally.)
T1 (CE)	Input	Use by the manufacture for testing. (Do not connect externally.)
T2 (VPP)	_	Use by the manufacture for testing. (Do not connect externally.)
N.C.	_	This pin is not connected to the internal IC. Leave N.C. pins open or connect them to GND or VDD.


Note: Be sure to connect a bypass capacitor rated at least 0.1 μF between VDD and GND.

4. External Dimensions / Marking Layout

4.1 External Dimensions

4.2 Marking Layout

5. Absolute Maximum Ratings

5. Absolute Maximum Ratings									
Item	Symbol	Condition	Rating	Unit					
Supply voltage (1)	Vdd	Between VDD and GND	–0.3 to +6.5	V					
Supply voltage (2)	VBAT	Between VBAT and GND	–0.3 to +6.5	V					
Input voltage	VIN2	FOE,SCL,SDA pins	GND-0.3 to +6.5	V					
Output voltage (1)	VOUT1	FOUT pin	GND-0.3 to VDD+0.3	V					
Output voltage (2)	Vout2	SDA and /INT pins	GND-0.3 to +6.5	V					
Storage temperature	Tstg	When stored separately, without packaging	-55 to +125	°C					

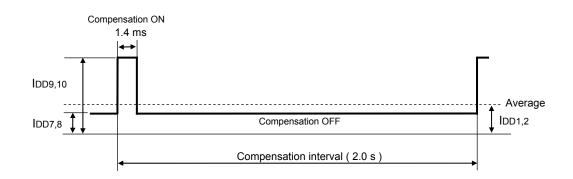
6. Recommended Operating Conditions

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating supply voltage (1)	VACC	Between VDD and GND (VDD = VBAT)	1.6	3.0	5.5	V
Operating supply voltage (2)	Vaccsw	Between VDD and GND	2.5	3.0	5.5	V
Backup power supply voltage	Vbat	Between VBAT and GND	1.6	3.0	5.5	V
Temp. compensation voltage	VTEM	Temperature compensation voltage	2.0	3.0	5.5	V
Clock supply voltage	VCLK	_	1.6	3.0	5.5	V
Operating temperature	TOPR	No condensation	-40	+25	+85	°C

7. Frequency Characteristics

Item	Symbol		Condition	Rating	Unit
Frequency stability	Δf / f	U B	Ta= 0 to +50 °C, VDD=3.0 V Ta=-40 to +85 °C, VDD=3.0 V	± 3.8 ^(*1) ± 5.0 ^(*2)	× 10 ⁻⁶
Frequency/voltage characteristics	f / V	Ta= +25 °	2C, VDD=2.2 V to 5.5 V	± 1.0 Max.	imes 10 ⁻⁶ /V
Oscillation start time	t STA		℃, VDD=1.6 V +85 ℃, VDD=1.6 V to 5.5 V	1.0 Max. 3.0 Max.	s
Aging	fa	Ta= +25 °	°C, VDD=3.0 V, first year	\pm 3 Max.	× 10 ⁻⁶ / year
Temperature Sensor Accuracy	Temp	VDD=3.0 V	V	± 5.0 Max. (TBD)	°C

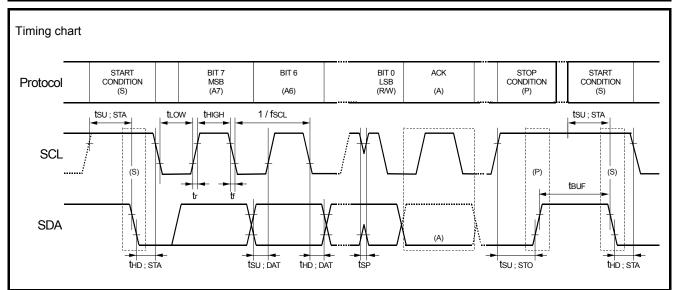
*¹⁾ Equivalent to 10 seconds of month deviation. *²⁾ Equivalent to 13 seconds of month deviation.


GND = 0 V

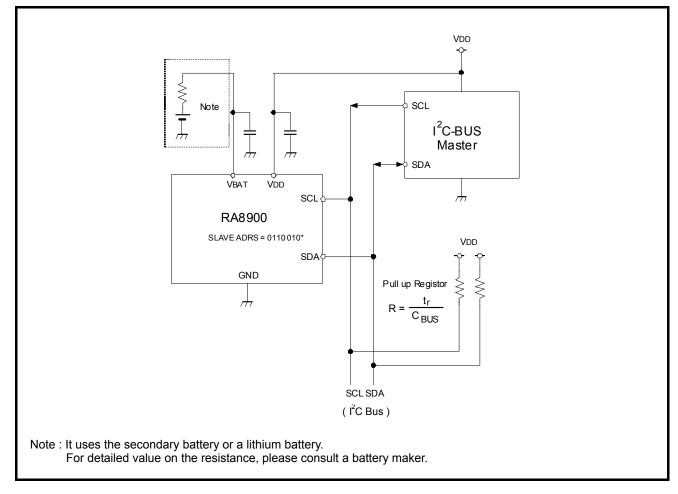
GND = 0 V

8. Electrical Characteristics

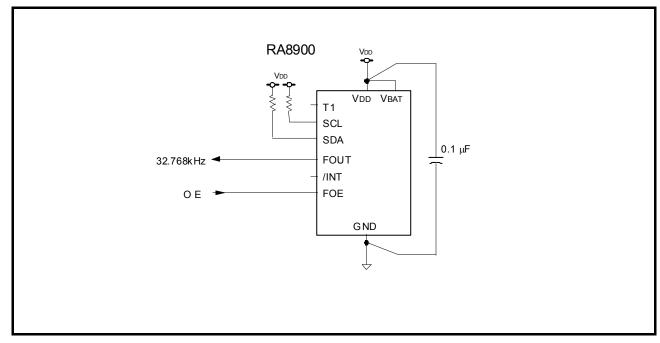
8.1. DC Characteristics		*Unless	otherwise spec	ified, GND =	0 V, VDD = 1.	6 V to 5.5 V	′, Ta = –40 °C	to +85 °C	
Item	Symbol	(Condition		Min.	Тур.	Max.	Unit	
Current consumption (1)	IDD1	fscl = 0 Hz, / INT FOE = GND	= VDD	VDD = 5 V		0.75	3.4	A	
Current consumption (2)	IDD2	FOUT : output OF Compensation int		VDD = 3 V		0.75	2.1	μΑ	
Current consumption (3)	Idd3	fscL = 0 Hz, / INT FOE = VDD	= VDD	VDD = 5 V		2.0	7.5		
Current consumption (4)	IDD4	FOUT :32.768 kH Compensation int		VDD = 3 V		1.5	5.0	μΑ	
Current consumption (5)	IDD5	fscl = 0 Hz, / INT FOE = VDD		VDD = 5 V		7.0	20.0	🗛	
Current consumption (6)	IDD6	FOUT :32.768 kH Compensation int		VDD = 3 V		4.5	12.0	μA	
Current consumption (7)	Idd7	fscl = 0 Hz, / INT FOE = GND		Vdd = 5 V		0.7	2.95		
Current consumption (8)	IDD8	FOUT : output OF Compensation OF	FOUT : output OFF (High Z) Compensation OFF			0.7	1.85	μA	
Current consumption (9)	IDD9	fscl = 0 Hz, / INT FOE = GND	= VDD	VDD = 5 V		120	900	🗛	
Current consumption (10)	IDD10	FOUT : output OF Compensation Of		VDD = 3 V		115	350	μΑ	
High-level input voltage	Viн	CE, DI, CLK, FOE	pins		0.8 imes VDD		5.5	V	
Low-level input voltage	VIL	CE, DI, CLK, FOE	-		GND - 0.3		$0.2\times V\text{DD}$	V	
High-level output	VOH1		VDD=5 V, IOH=		4.5		5.0		
voltage	Voh2	FOUT pin	VDD=3 V, IOH=		2.2		3.0	V	
. enage	Vонз		VDD=3 V, IOH=		2.9		3.0		
	VOL1		VDD=5 V, IOL=		GND		GND+0.5		
	VOL2	FOUT pin	VDD=3 V, IOL=		GND		GND+0.8	V	
Low-level output	Vol3		VDD=3 V, IOL=		GND		GND+0.1		
voltage	Vol4 / INT pin		VDD=5 V, IOL=		GND		GND+0.25	V	
	Vol5	· VDD=3 V, IOL=			GND		GND+0.4		
	VOL6	SDA pin	SDA pin VDD ≥2 V, IOL=3 mA		GND		GND+0.4	V	
Input leakage current	Ilk	FOE, SCL, SDA p	bins, $V_{IN} = V_D$	d or GND	-0.5		0.5	μA	
Output leakage current	loz	/ INT, SDA, FOUT	Γ pins, Vou⊤ = V	DD or GND	-0.5		0.5	μA	


• Temperature compensation and consumption current

* Unless otherwise specified,


8.2. AC Characteristics

8.2. AC Characteristics		$GND = 0 V$, $VDD = VBAT=1.6 V$ to $5.5 V$, $Ta = -40 \circ C$ to $+85 \circ$				
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
SCL clock frequency	fscl				400	kHz
Start condition setup time	tsu;sta		0.6			μs
Start condition hold time	thd;sta		0.6			μs
Data setup time	tsu;dat		100			ns
Data hold time	thd;dat		0		900	ns
Stop condition setup time	tsu;sto		0.6			μs
Bus idle time between start condition and stop condition	tBUF		1.3			μS
Time when SCL = "L"	t∟ow		1.3			μS
Time when SCL = "H"	tніgн		0.6			μs
Rise time for SCL and SDA	tr				0.3	μs
Fall time for SCL and SDA	tf				0.3	μS
Allowable spike time on bus	tSP				50	ns
FOUT duty	tw /t	50% of VDD level	40	50	60	%



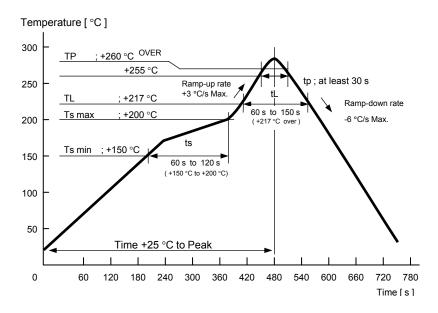
When accessing this device, all communication from transmitting the start condition to transmitting the stop condition after access **should be completed within 0.95 seconds**. Caution: If such communication requires **0.95 seconds** or longer, the I²C bus interface is reset by the internal bus timeout function.

8.3. Connection with Typical Microcontroller

8.4. When used as a clock source (32 kHz-TCXO)

9. Environmental and mechanical characteristics

(The company evaluation condition We evaluate it by the following examination item and examination condition.)


		Va	lue *1	
No.	Item	Δf/f	Electrical	Test Conditions
		[1 × 10 ⁻⁶] *2	characteristics	
1	High temperature storage	*3 ± 50		+125 °C × 1 000 h
2	Low temperature storage	*3 ± 10		-55 °C × 1 000 h
3	High temperature bias	*3 ± 20		+85 °C \times 5.5 V \times 1 000 h
4	Low temperature bias	*3 ± 10		-40 °C × 5.5 V × 1 000 h
5	Temperature humidity bias	*3 ± 20		+85 $^\circ\text{C}$ \times 85 %RH \times 5.5 V \times 1 000 h
6	Temperature cycle	*3 ± 10		-40 °C ⇔ +85 °C
				30 min at each temp. 1000 cycles
7	Resistance to soldering heat	± 8	*4 Satisfy item 7,8 after test	IPC/JEDEC J-STD-020D.1 Reflow (3 times)
8	Drop	± 5		Free drop from 750 mm height on a hard
				wooden board for 3 times (Board is thickness
				more than 30 mm)
9	Vibration	± 5		10 Hz to 55 Hz amplitude 0.75 mm
				55 Hz to 500 Hz acceleration 98 m/s ²
				10 Hz \rightarrow 500 Hz \rightarrow 10 Hz 15min./cycle
				6 h (2 hours , 3 directions)
10	Solderability	Terminatior	n must be 95 %	Dip termination into solder bath at
		covered wi	th fresh solder	+235 °C \pm 5 °C for 5 s (Using Rosin Flux)

< Notes >

- *1 Each test done independently.
- *2 Measuring 2 h to 24 h later leaving in room temperature after each test.
- *3 Pre conditionings
 - 1. +125 °C \times 24 h to +85 °C \times 85 % \times 168 h \pm 1 h \rightarrow reflow 3 times
 - 2. Initial value shall be after 24 h at room temperature.
- *4 7. Frequency Characteristics (but excludes frequency tolerance and aging.)

8. Electrical characteristics

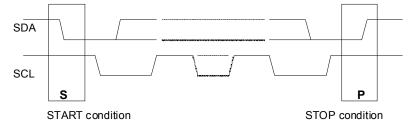
◆ Reflow condition (follow to IPC / JEDEC J-STD-020D.1)

10. How to use 10.1 Reading/Writing Data via the I²C Bus Interface

Overview of I²C-BUS

10.1.1

The I²C bus supports bi-directional communications via two signal lines: the SDA (data) line and SCL (clock) line. A combination of these two signals is used to transmit and receive communication start/stop signals, data transfer signals, acknowledge signals, and so on.


10.1.2

Both the SCL and SDA signals are held at high level whenever communications are not being performed. The starting and stopping of communications is controlled at the rising edge or falling edge of SDA while SCL is at high level.

10.1.3

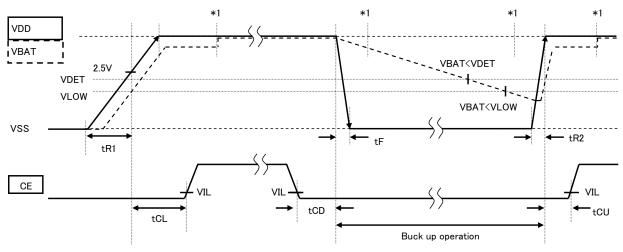
During data transfers, data changes that occur on the SDA line are performed while the SCL line is at low level, and on the receiving side the data is output while the SCL line is at high level.

The I²C bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select pin, slave addresses are allocated to each device and the receiving device responds to communications only when its slave address matches the slave address in the received data. In either case, the data is transferred via the SCL line at a rate of one bit per clock pulse.

10.1.4. Slave address

The I²C bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select pin, slave addresses are allocated to each device.

All communications begin with transmitting the [START condition] + [slave address (+ R/W specification)]. The receiving device responds to this communication only when the specified slave address it has received matches its own slave address.


Slave addresses have a fixed length of 7 bits. This RTC's slave address is **[0110 010*]**. An R/W bit ("*" above) is added to each 7-bit slave address during 8-bit transfers.

	Transfer data			Sla	ve addro	ess			R/W bit
	Transier Gala	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Read	65 h	0	4	4	•	•	4	0	1 (= Read)
Write	64 h	U	UII		U	U		U	0 (= Write)

10.2 Backup and Recovery

* tR1 is restrictions to validate power-on reset. When cannot keep this standard, power-on reset does not work normally. It is necessary to initial setting by the software command.

Repeated ON/OFF of the power supply in short term, the power-on reset becomes unstable. After power-OFF, keep a state of VDD=GND more than 60 seconds to validate power-on reset. When it is impossible, please perform initial setting by the software command.

*1:VDD Voltage detection

Item	Symbol	Condition	Min.	Тур.	Max.	Unit.
Detection voltage (1)	VDET	-	1.9	1.95	2.0	V
Detection voltage (2)	VLOW	-	1.2	-	1.6	V
Detection voltage (3)	VDET3	-		2.4		V
Power supply rise time1	tR1	VDD=VSS to 2.5V	1	-	10	ms / V
Access wait time (Initial power on)	tCL	After VDD=2.5V	30	-	-	ms
Chip disable wait time	tCD	After stop condition	0	-	-	μs / V
Power supply fall time	tF	VDD=2.5V to VSS	2	-	-	μs / V
Power supply rise time2	tR2	VDD=VSS to 2.5V	15	-	-	μs / V
Access wait time (Normal power on)	tCU	After VDD=2.5V	0	-	-	μS

11. Application notes

1) Notes on handling

This module uses a C-MOS IC to realize low power consumption. Carefully note the following cautions when handling.

(1) Static electricity

While this module has built-in circuitry designed to protect it against electrostatic discharge, the chip could still be damaged by a large discharge of static electricity. Containers used for packing and transport should be constructed of conductive materials. In addition, only soldering irons, measurement circuits, and other such devices which do not leak high voltage should be used with this module, which should also be grounded when such devices are being used.

(2) Noise

If a signal with excessive external noise is applied to the power supply or input pins, the device may malfunction or "latch up." In order to ensure stable operation, connect a filter capacitor (preferably ceramic) of greater that 0.1 μ F as close as possible to the power supply pins (between VDD and GNDs). Also, avoid placing any device that generates high level of electronic noise near this module.

* Do not connect signal lines to the shaded area in the figure shown in Fig. 1 and, if possible, embed this area in a GND land. (3) Voltage levels of input pins

When the input pins are at the mid-level, this will cause increased current consumption and a reduced noise margin, and can impair the functioning of the device. Therefore, try as much as possible to apply the voltage level close to VDD or GND.

(4) Handling of unused pins

Since the input impedance of the input pins is extremely high, operating the device with these pins in the open circuit state can lead to unstable voltage level and malfunctions due to noise. Therefore, pull-up or pull-down resistors should be provided for all unused input pins.

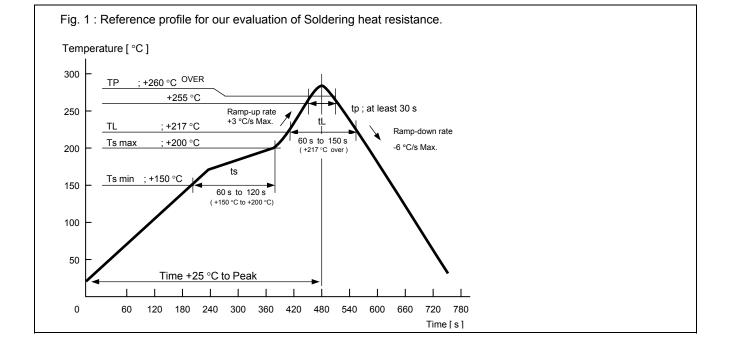
2) Notes on packaging

(1) Soldering heat resistance.

If the temperature within the package exceeds +260 °C, the characteristics of the crystal oscillator will be degraded and it may be damaged. The reflow conditions within our reflow profile is recommended. Therefore, always check the mounting temperature and time before mounting this device. Also, check again if the mounting conditions are later changed. * See Fig. 2 profile for our evaluation of Soldering heat resistance for reference.

(2) Mounting equipment

While this module can be used with general-purpose mounting equipment, the internal crystal oscillator may be damaged in some circumstances, depending on the equipment and conditions. Therefore, be sure to check this. In addition, if the mounting conditions are later changed, the same check should be performed again.


(3) Ultrasonic cleaning

Depending on the usage conditions, there is a possibility that the crystal oscillator will be damaged by resonance during ultrasonic cleaning. Since the conditions under which ultrasonic cleaning is carried out (the type of cleaner, power level, time, state of the inside of the cleaning vessel, etc.) vary widely, this device is not warranted against damage during ultrasonic cleaning.

(4) Mounting orientation

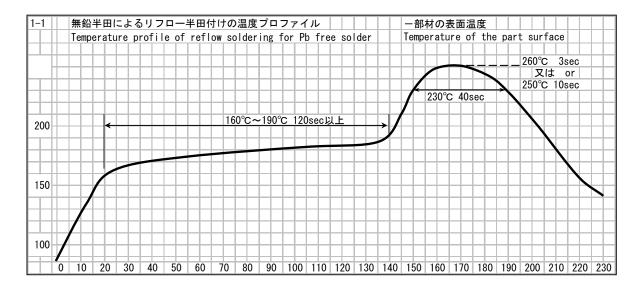
This device can be damaged if it is mounted in the wrong orientation. Always confirm the orientation of the device before mounting.

- (5) Leakage between pins
 - Leakage between pins may occur if the power is turned on while the device has condensation or dirt on it. Make sure the device is dry and clean before supplying power to it.

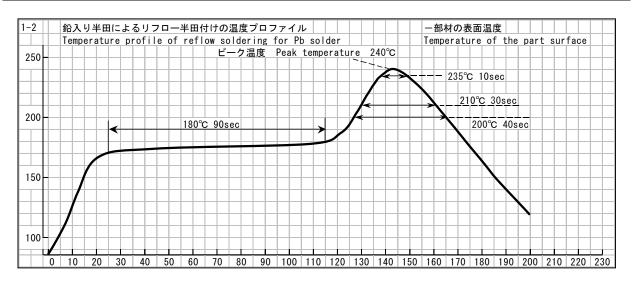
ALPINEの要求する半田付け関連の耐熱条件への見解 Alpine's requirement of heatproof condition for soldering

Ver. 3.03

この部材の半田付け関連の耐熱条件を、当てはまる項目のMarkを塗りつぶすことで報告致します。 Report the condition of heatproof for soldering of this part by marking the appropriate issue written below.

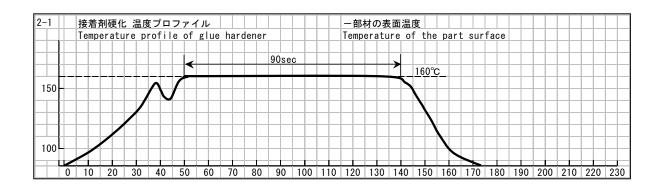

Rank C: ALPINE要求条件以外の管理基準について

要求条件以外のプロファイルの提示が必要な場合については、生産現場で管理できる記載内容で 指定の項目に、提示されているページを記載致します。


- Rank C: Standard control for other condition. (Other than Alpine's requirement) If it is necessary to hand in the profile other than Alpine's requirement, note the page no. for the specified issue. It needs to be possible to control at manufacturing scene.
- 1-1 無鉛半田によるリフロー半田付けの温度条件

Temperature profile of reflow soldering for Pb free solder 要求された温度プロファイルで半田付けすることに関し、この部材は、 Mark the appropriate condition for this part

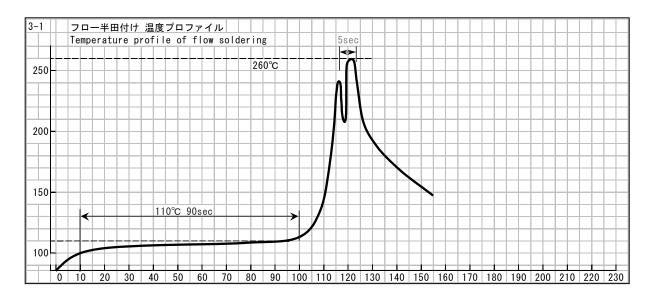
Marn			
Mark	Rank	保証内容 Assurance condition	
\cap	PA 2		なお、ピーク温度は、
\square		Assures enduring 2 times reflow heat	Temperature peak is
	PA 1	2回のリフローによる加熱に耐える実力があります	260 °C
		Has ability of enduring 2 times reflow heat	
	PB 2	1回のリフローによる加熱に耐えることが保証できます	
		Assures enduring 1 time reflow heat	
	PB 1	1回のリフローによる加熱に耐える実力があります	
		Has ability of enduring 1 time reflow heat	となります
	PC	指定のプロファイルであれば保証可能です	プロファイルはP. に提示してあります
		Possible to assure under specified profile	Profile is written in page
	PN	リフローに対応する品種ではありません	
		This part is not reflow part	



1-2 鉛入り半田によるリフロー半田付けの温度条件 Temperature profile of reflow soldering for Pb solder 要求された温度プロファイルで半田付けすることに関し、この部材は、 Mark the appropriate condition for this part 保証内容 Assurance condition Mark Rank RA 2 2 回のリフローによる加熱に耐えることが保証できます Assures enduring 2 times reflow heat 2回のリフローによる加熱に耐える実力があります RA 1 Has ability of enduring 2 times reflow heat RB2 1回のリフローによる加熱に耐えることが保証できます Assures enduring 1 time reflow heat 1回のリフローによる加熱に耐える実力があります RB 1 Has ability of enduring 1 time reflow heat 指定のプロファイル以下であれば保証可能です RC プロファイルはP に提示してあります Possible to assure under specified profile Profi<u>le is written in page</u> RN リフローに対応する品種ではありません This part is not reflow part

 2-1 接着剤硬化の温度条件(RD/AX部品は、この条件を満足しなければならない) Temperature profile of glue hardener (RD/AX parts must satisfy this condition) 要求された温度プロファイルに関し、この部材は、
 Mark the appropriate condition for this part

Mark	Rank	保証内容 Assurance condition	
\square	HA 2	要求された条件の加熱に耐えることが保証できます	
\square		Assures enduring required heat profile	
	HA 1	要求された条件の加熱に耐える実力があります	
		Has ability of enduring required heat profile	
	HC	指定のプロファイル以下であれば保証可能です	プロファイルはP に提示してあります
		Possible to assure under specified profile	Profile is written in page



3-1 フロー半田付けの温度条件

Temperature profile of flow soldering

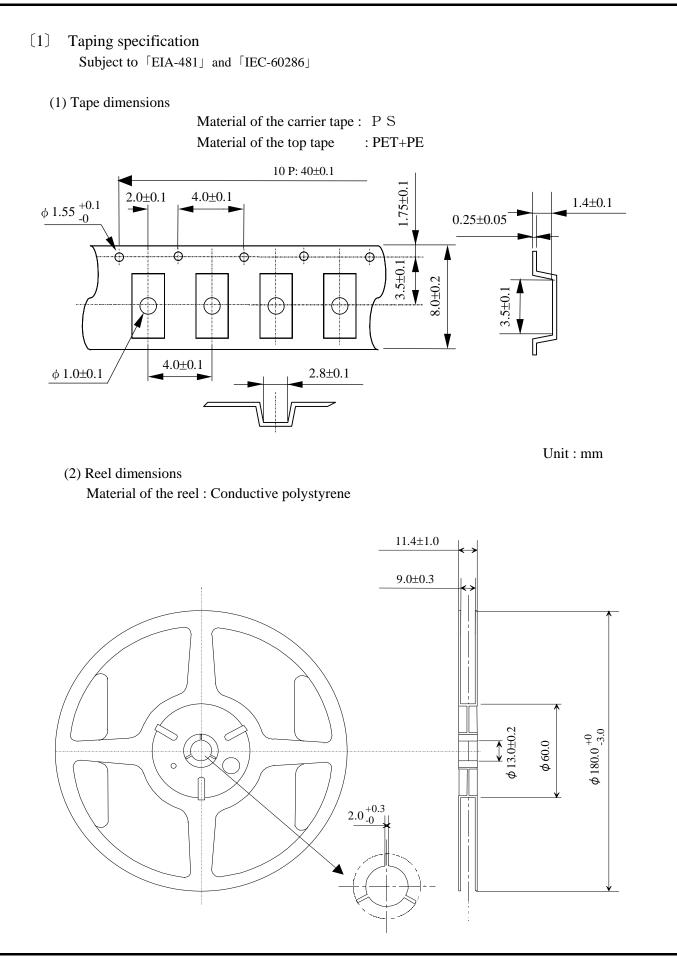
要求された温度プロファイルで半田付けすることに関し、この部材は、

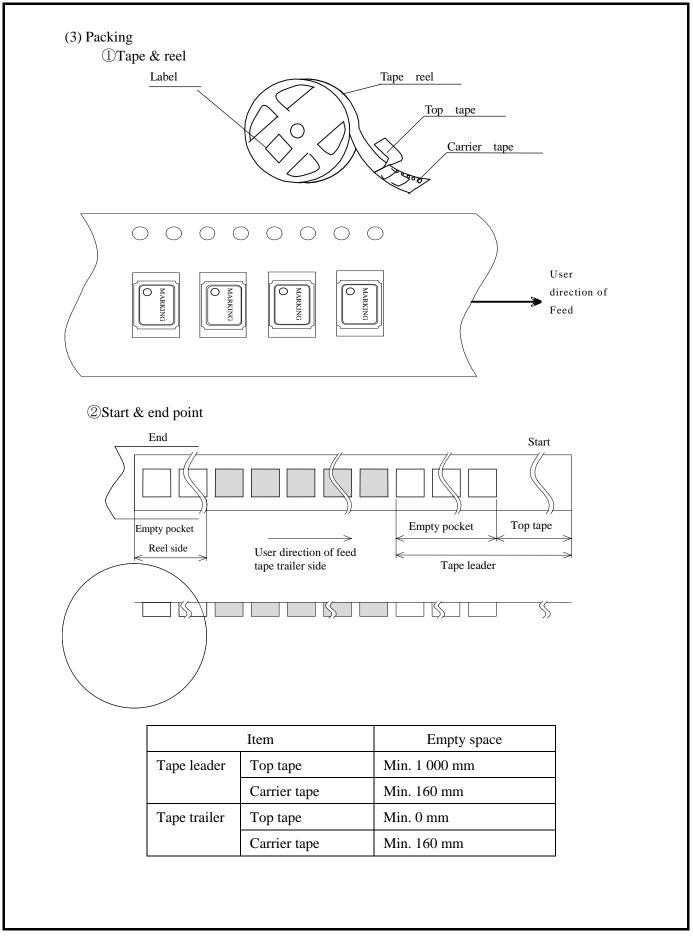
Mark	the a	ppropriate condition for this part	
Mark	Rank	保証内容 Assurance condition	
	FA 2	フローによる加熱に耐えることが保証できます	
		Assures enduring heat by flow	
	FA 1	フローによる加熱に耐える実力があります	
		Has ability of enduring heat by flow	
	FC	指定のプロファイル以下であれば保証可能です	プロファイルはP に提示してあります
		Possible to assure under specified profile	Profile is written in page
\bigcirc	FN	フローに対応する品種ではありません	
\square		This part is not flow part	

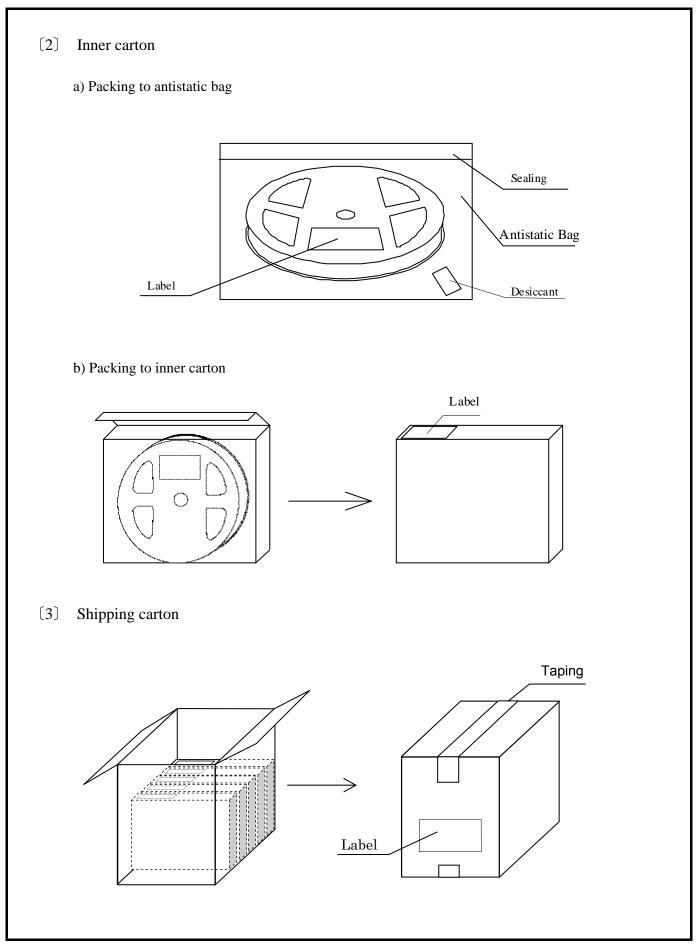
4-1 半田こてによる半田付け温度条件

Temperature profile of soldering with soldering iron 要求された温度条件で半田付けすることに関し、この部材は、 半田付け部分の加熱条件で表現すると Mark the appropriate condition for this part Express the beat condition of soldering point

Expre	ess tr	e heat condition of soldering point	
Mark	Rank	保証内容 Assurance condition	
	MA	Max 380℃ × 3Secを保証できます	
		Assure Max 380°C × 3Sec	
\bigcirc	MB 2	Max 350℃ × 3Secを保証できます	
\smile		Assure Max 350°C × 3Sec	
	MB 1	Max 300℃ × 3Secを保証できます	
		Assure Max 300°C × 3Sec	
	MC	指定の条件であれば保証可能です	Max °C × Sec
		Possible to assure under specified profile	
			注意点としては、
			Caution
	MN	NG	


TAPING SPECIFICATION


I. Application


This standard will apply to 3.2×2.5 Ceramic package. Spec : CE package

${\rm I\hspace{-1.5pt}I}$. Contents

Item No.	Item	Page
[1]	Taping specification	1 to 2
[2]	Inner carton	3
[3]	Shipping carton	
[4]	Marking	4
[5]	Quantity	
[6]	Storage environment	
[7]	Handling	

[4] Marking

(1) Reel marking

- Reel marking shall consist of :
 - 1) Parts name
 - 2) Quantity
 - 3) Manufacturing date or symbol
 - 4) Manufacturer's date or symbol
 - 5) Others (if necessary)

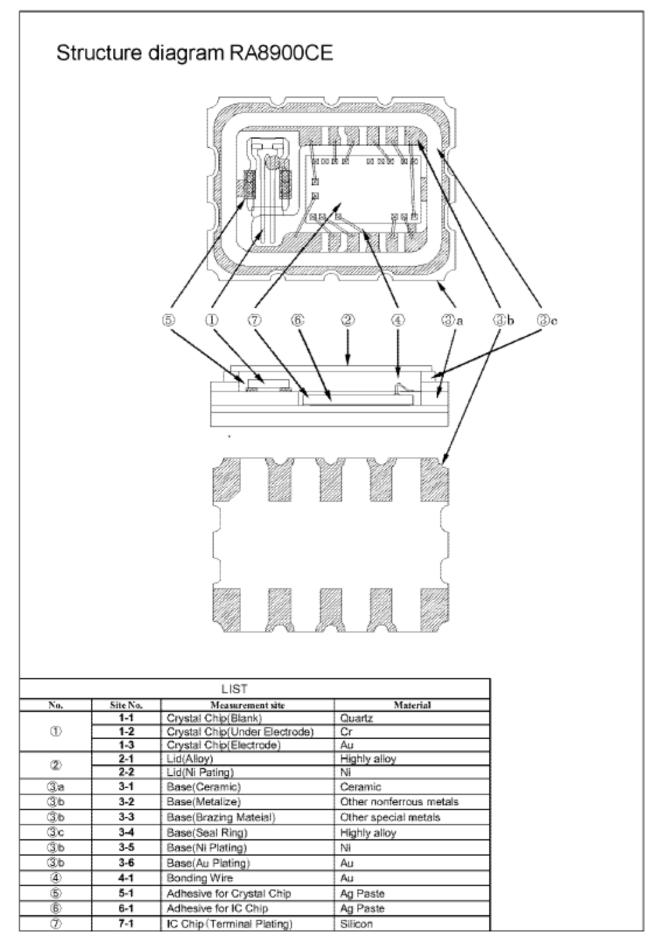
(2) Inner carton marking

• Same as reel marking.

(3) Shipping carton marking

- Shipping carton marking shall consist of :
 - 1) Parts name
 - 2) Quantity
- [5] Quantity

• Max :2,000 pcs./reel


[6] Storage environment

- (1) Before open the packing, we recommend to keep less than +30 °C and 85 %RH of Humidity, and to use it less than 6 months after delivery.
- (2) We recommend to open Package in immediately before use. After open Package, We recommend to keeps less than 6 month. No need dry air before soldering work if it is less than temperature +30 °C, 85 humidity %RH.
- (3) Not to expose the sun.
- (4) Not to storage with some erosive chemicals.
- (5) Nothing is allowed to put on the reel or carton to prevent mechanical damage.

[7] Handling

• To handle with care to prevent the damage of tape, reel and products.

Structure diagram

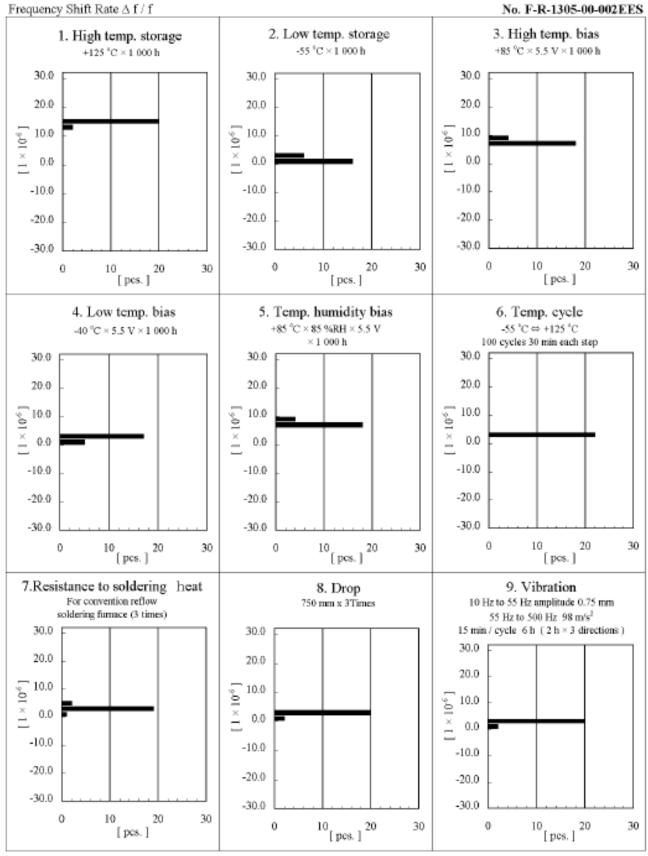
Reliability test data

RELIABILITY TEST DATA Product Name : RA8900CE

The Company evaluation condition

We evaluate environmental and me	chanical characteristics by the following test condition	No. F-R-1305-00-001EES

			VAL	JIE ⁶ 1	TEST	FAIL
No.	ITEM	TEST CONDITIONS	$\Delta f/f^{\circ}2$	Electrical	Qty	Qty
TAO:	11 Livi		[1 × 10 ⁻⁶]	characteristics	[n]	[n]
1	High temperature storage	+125 °C × 1 000 h	*3 ± 50	enalacensees	22	0
2	Low temperature storage	-55 °C × 1 000 h	*3 ±10		22	0
3	High temperature bias	+85 °C × 5.5 V × 1 000 h	*3 ± 20		22	0
4	Low temperature bias	-40 °C × 5.5 V × 1 000 h	*3 ±10		22	0
5	Temperature humidity bias	+85 °C × 85 %RH × 5.5 V × 1 000 h	*3 ± 20	Satisfy specification after test	22	0
6	Temperature cycle	-55 °C ⇔ +125 °C 30 min at each temp. 100 cycles	*3 ±10	atter test	22	0
7	Resistance to soldering heat	For convention reflow soldering furnace (3 times) Follow JEDEC J-STD-020D.1	± 8		22	0
8	Shoek	Free drop from 750 mm height on a hard wooden board for 3 times (Board is thickness more than 30 mm)	± 5		22	0
9	Vibration	10 Hz to 55 Hz amplitude 0.75 mm 55 Hz to 500 Hz acceleration 98 m/s ² 10 Hz \rightarrow 500 Hz \rightarrow 10 Hz 15 min/cycle 6 h (2 h × 3 directions)	± 5		22	0
10	Solderability	Dip termination into solder bath at $+235$ °C ± 5 °C for 5 s (Using Rosin Flux)	95 %	tion must be covered esh solder	11	0


Notes

*1 Each test done independently.

*2 Measuring 2 h to 24 h later leaving in room temperature after each test.

*3 Pre-conditions (Dry +125°Cx24h→ high temp & humidity +85°Cx85%RHx168h→Reflow 3times) should be performed before each tests. Pre conditionings Initial value shall be after 24 h at room temperature.

Qualification Data

Product Name : RA8900CE

No. F-R-1305-00-002EES

Qualification Data

ATTN : ALPINE ELECTRONICS(CHINA)CO., LTD.Dalian R&D Center

Failure rate

No.QDS13-152 Feb., 14, 2014 TD·CS QUALITY ASSURANCE DEPARTMENT

The parts failure rate for real time clock module are following.

Failure rate can be calculated with high temperature test result of +125 °C.

The calculate procedure of Failure rate is as follows.

RA8900CE showed no failure during our with high temperature test result of +125 °C.

Failure rate = $\frac{0.917}{2.2 \times 10^4 \times 578.72}$

= 72.0 FIT

Total operating time ; 2.2×10^4 Acceleration factor ; 578.72 Reliability level ; 60 %(at +25 °C)

Reel marking label

Reel marking lable

Example of label

RIAI	L TIME CLOCK MODU	JLE	
P/N 1	2345678901234567890	P/O 12345678901234567	/890
RA89	OOCE UB		
	NO. Q123456789-001	Q'TY	2,000 pcs
	CODE: / 44HL	X1 B000271 A00200 09	2014.05.30
SEIKO	DEPSON CORP MAD	DE IN: MALAYSIA	\
	0		
	0	3	
	<u> </u>		
	5	6	
	0	8	
	Item		Contents
n	PRODUCT NAME	Crystal unit -	- QUARTZ CRYSTAL
U U	PRODUCT NAME	Crystal oscillator -	- CRYSTAL OSCILLATOR
		Real time clock module -	
2	PN	Customer Part Number	
3	P/0	Purchase Order Nubmer	
a a	TYPE, FREQENCY, SPEC	Seko Epson Products Name, F	requency, Spec.
5		Sipping Lot Number	
	LOT NO.	SIDDING LOUNGINDET	
6	LOT NO. QUANTITY	Quantity	
© 2			
	QUANTITY WEEK CODE	Quantity Week Code Oldest/Newest	cking Code, Ship Date
Ø	QUANTITY	Quantity	cking Code, Ship Date