INFORMATION

PRODUCT No.: X1G004481004100

MODEL: SG7050CAN

INFO. No.: A14-642-0A

DATE: Aug. 26. 2014

SEIKO EPSON CORPORATION

8548 Naka-minowa Minowa-machi Kamiina-gun Nagano-ken 399-4696 Japan

INTRODUCTION

- 1. The contents is subject to change without notice. Please exchange the specification sheets regarding the product's warranty.
- 2. This sheet is not intended to guarantee or provide an approval of implementation of industrial patents.
- 3. We have prepared this sheet as carefully as possible. If you find it incomplete or unsatisfactory in any respect, We would welcome your comments.

This product is compliant with RoHS Directive.

This Product supplied (and any technical information furnished, if any) by Seiko Epson Corporation shall not be used for the development and manufacture of weapon of mass destruction or for other military purposes. Making available such products and technology to any third party who may use such products or technologies for the said purposes are also prohibited.

This product listed here is designed as components or parts for electronics equipment in general consumer use. We do not expect that any of these products would be incorporated or otherwise used as a component or part for the equipment, which requires an extra high reliability, such as satellite, rocket and other space systems, and medical equipment, the functional purpose of which is to keep life.

Product No. / Model

The product No. of this crystal oscillator unit is X1G004481004100.

The model is SG7050CAN.

Suffix: TJGA

Contents

Item No.	Item	Page
[1]	Absolute maximum ratings	2
[2]	Operating range	2
[3]	Frequency characteristics	2
[4]	Terminal assignment	3
[5]	Electrical characteristics	4
[6]	Test circuit	5
[7]	Timing chart	6-7
[8]	Environmental and mechanical characteristics	8
[9]	Electro static Discharge	9
[10]	Dimensions and marking layout	10
[11]	Notes	11
[12]	Recommendable patterning	12

[1] Absolute maximum ratings

Parameter	Symbol	Value	Unit	Note
Supply voltage	Vcc-GND	-0.3 to +4.0	V	
Storage temperature	T_stg	-40 to +125		Stored as bare product after unpacking.
Input voltage	Vin	-0.3 to Vcc+0.3	V	ST Terminal

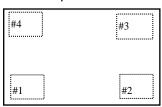
^{*} Concerning the frequency change, please refer [8] Environmental and mechanical characteristics.

[2] Operating range

		Value				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	Vcc	1.6	-	3.63	V	Symbol : T
Supply voltage	GND	0.0	0.0	0.0	V	
Input voltage	VIN	GND	-	Vcc	V	
Operating temperature	T_use	-40	+25	+85	°C	Symbol : G
Output load condition	L_CMOS	ı	ı	15	pF	

- Start up time(0 %Vcc \rightarrow 90 %Vcc) of power source should be more than 150 μ s.
- By-pass capacitor (0.01 μ F to 0.1 μ F) is connected near Vcc between Vcc and GND. (Refer to [11] Recommendable patterning)

[3] Frequency characteristics


Output frequency (fo) 32.768 MHz

Parameter	Symbol	Value[1 × 10 ⁻⁶]	Note
Frequency tolerance *1	<u>f</u> tol (OSC)	± 50	Symbol : J
Aging	<u>f</u> aging	± 3	T_use=+25 °C, Vcc=3.3 V First year

^{*1} This includes initial frequency tolerance, temperature characteristics, input voltage characteristics(+/-10% Vcc), and load characteristics, but excludes aging.

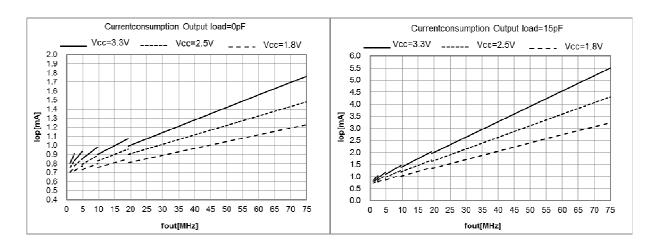
[4] Terminal assignment

Top View

Terminal name	Terminal No.	Terminal type.
ST	1	INPUT
GND	2	_
OUT	3	OUTPUT
Vcc	4	_

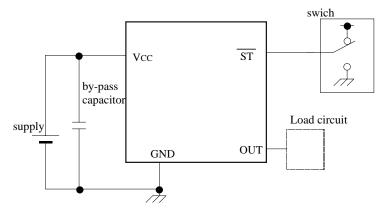
 $\overline{\text{ST}}$ pin : High or open \rightarrow Specified frequency output = enable

 $\overline{\rm ST}$ pin : Low ightarrow Output is high impedance = disabled

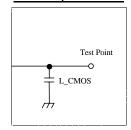

^{*} When the $\overline{\mbox{ST}}$ terminal is not controlled, it should be connected to the Vcc terminal.

[5] Electrical characteristics

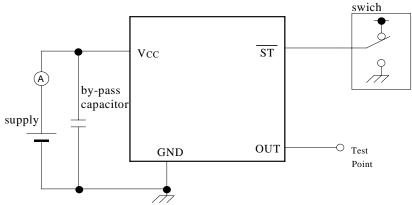
(Please see page 2 [2] Operating range)


		Value				
Parameter	Symbol	Min.	Max.	Unit	Note	
Start up time	tosc	-	3	ms	t=0 at 90 %Vcc	
		ı	1.5		No load, 1 MHz to 20 MHz	
		ı	1.8		No load, 20 MHz to 40 MHz $Vcc=1.8 V \pm 10 \%$	
		-	2.1		No load, 40 MHz to 60 MHz	
			2.4		No load, 60 MHz to 75 MHz	
		-	1.6		No load, 1 MHz to 20 MHz	
Current concurration	loo	-	2.0	A	No load, 20 MHz to 40 MHz	
Current consumption	Icc	-	2.4	mA	No load, 40 MHz to 60 MHz	
			2.8		No load, 60 MHz to 75 MHz	
		-	1.8		No load, 1 MHz to 20 MHz	
		-	2.2		No load, 20 MHz to 40 MHz Vcc=3.3 V ±10 %	
		-	2.6		No load, 40 MHz to 60 MHz	
			3.0		No load, 60 MHz to 75 MHz	
		-	2.1		—————————————————————————————————————	
Standby current	I_std	-	2.5	μΑ	ST = GND Ta < +105 °C	
		-	2.7		Vcc=3.3 V ±10 %	
Output rise time *1	tr	-	3.0	no	20 %Vcc → 80 %Vcc	
Output rise time *1	u	-	3.5	ns	20 %Vcc → 80 %Vcc Vcc=1.8 V±10 %	
Output fall time *1	tf	-	3.0	no	80 %Vcc → 20 %Vcc	
Output fall time *1	_	-	3.5	ns	80 %Vcc → 20 %Vcc Vcc=1.8 V ±10 %	
Symmetry	SYM	45	55	%	50 %Vcc Level	
					IOH = -3 mA , Vcc=1.8 V \pm 10 %	
High level output voltage	Vон	Vcc-0.4	-	V	IOH = -4 mA , Vcc=2.5 V ±10 %	
					IOH = -6 mA , Vcc=3.3 V ±10 %	
					IOH = 3 mA , Vcc=1.8 V ±10 %	
Low level output voltage	Vol	-	0.4	V	IOH = 4 mA , Vcc=2.5 V ±10 %	
					IOH = 6 mA , Vcc=3.3 V ±10 %	
High level input voltage	Vih	0.8 Vcc	-	V	ST terminal	
Low level input voltage	VIL	-	0.2 Vcc	V	ST terminal	
Input current	Iн	-	10	μΑ	VIN = VCC	
·	lıL	-10	-	μA	VIN = GND	
Output disable time *2	tstp	-	100	ns	ST terminal High → Low	
Output enable time *2	tsta	-	3	ms	ST terminal Low → High	

Refer to [6] Test circuit [7] Timing chart


[6] Test circuit

1) Waveform observation

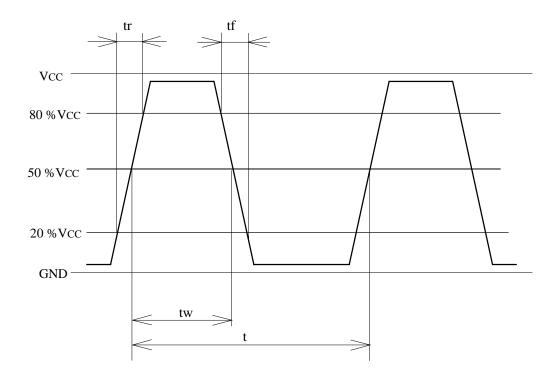


Load circuit

load capacitance

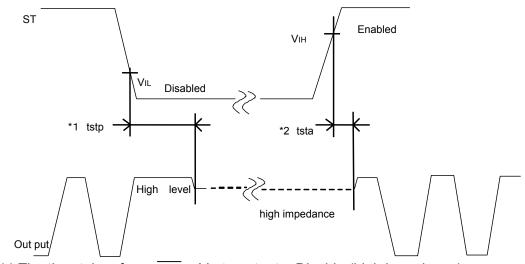
2) Current consumption

*Current consumption under the disable function should be $\overline{ST} = GND$


3) Condition

- (1) Oscilloscope
 - Band width should be minimum 5 times higher (wider) than measurement frequency.
 - Probe earth should be placed closely from test point and lead length should be as short as possible.
 - * Recommendable to use miniature socket. (Don't use earth lead.)
- (2) L CMOS also includes probe capacitance.
- (3) By-pass capacitor (0.01 μF to 0.1 μF) is placed closely between Vcc and GND.
- (4) Use the current meter whose internal impedance value is small.
- (5) Power supply
 - Start up time (0 %Vcc \rightarrow 90 %Vcc) of power source should be more than 150 μ s.
 - Impedance of power supply should be as lowest as possible.

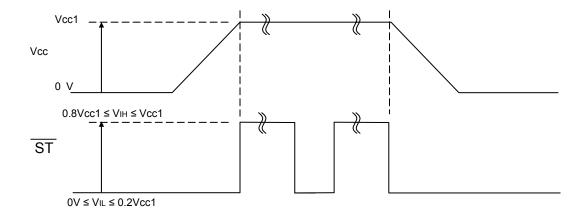
[7] Timing chart


1) C-MOS load

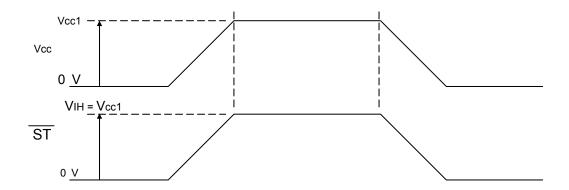
SYM =
$$tw/t \times 100$$
 (%)

2) ST function and timing

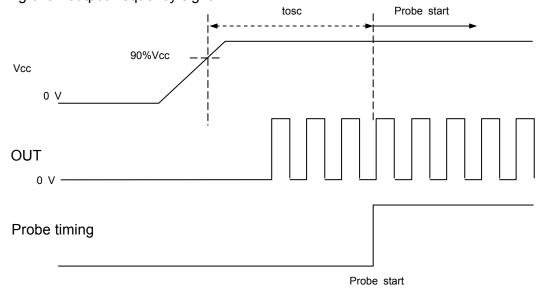
ST function	Osc. circuit	Output status
High or Open	Oscillation	Specified frequency is output : Enable
Low	Oscillation stop	Output becomes high impedance : Disable


- *1 The time taken from ST =V_{IL} to output = Disable (high impedance)
- *2 The time taken from \overline{ST} =VIH to output = Start

Output start : VoH≥80%Vcc, VoL≤20 %Vcc, fout = fo±1 000×10⁻⁶

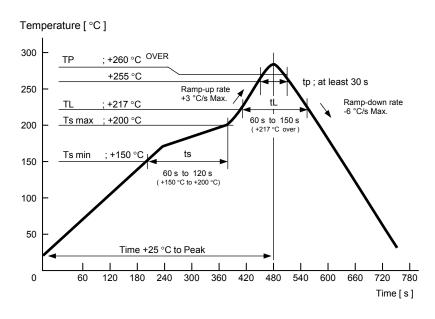

3) ST Control timing

ST function is used on the voltage below supply voltage.


ST control timing differs from Vcc control timing

ST terminal is connected to Vcc terminal

4) Timing of an output frequency signal


[8] Environmental and mechanical characteristics

(The company evaluation condition We evaluate it by the following examination item and examination condition.)

		Value *1		Test Conditions
No	Item	Δf/f*2	Electrical	
-		$[1 \times 10^{-6}]$	characteristics	
1	High temperature storage	*3 ± 20		+125 °C × 1 000 h
2	Low temperature storage	*3 ± 10		-40 °C × 1 000 h
3	High temperature bias	*3 ± 10		+105 °C × V _{CC} Max. × 1 000 h
4	Low temperature bias	*3 ± 10		-40 °C × V _{CC} Max. × 1 000 h
5	Temperature humidity bias	*3 ± 10		+85 °C × 85 %RH × V _{CC} Max. × 1 000 h
6	Temperature cycle	*3 ± 10		-40 °C ↔ +125 °C
	Temperature cycle	3 10		30 min. at each temperature 100 cycles
7	Resistance to soldering heat	± 3		Convection reflow soldering furnace (3 times) Ref. IPC/JEDEC J-STD-020D.1
8	Shock	± 3	Satisfy Item [5] after test.	150 g dummy Jig (Standard) drop from 1 500 mm height on the Concrete 3 directions 10 times.
9	Vibration	±2		10 Hz to 55 Hz amplitude 0.75 mm 55 Hz to 500 Hz acceleration 98 m/s ² 10 Hz \rightarrow 500 Hz \rightarrow 10 Hz 15 min./cycle 6 h (2 hours , 3 directions)
10	Seal	1 × 10 ⁻⁹ Pa·m ³ /s		He leakage detector
11	Solderability	Termination must be 95 % covered with fresh solder		Dip termination into solder bath at +235 °C \pm 5 °C for 5 s (Using Rosin Flux)
12	Pull - off	No peeling-off at a solder part		10 N press for 10 s ± 1 s Ref. EIAJ ED-4702

< Notes >

Convection reflow condition (IPC/JEDEC J-STD-020D.1)

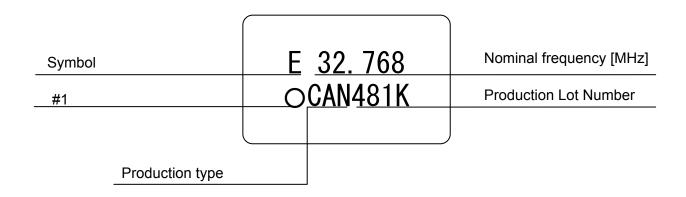
^{*1} Each test done independently.

^{*2} Measuring 2 h to 24 h later leaving in room temperature after each test.

^{*3} Initial value shall be measured after 24 h storage at room temperature after pre-conditioning. Pre-conditioning: Reflow (3 times)

[9] Electro Static Discharge

· ESD

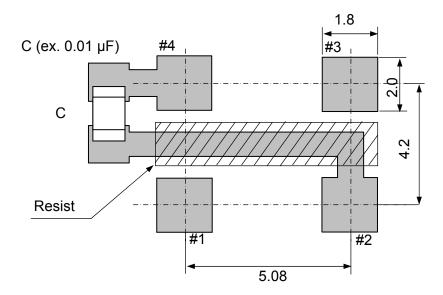

Item	Electrostatic Discharge	Test term
HBM	2 000 V Min.	EIAJ ED-4701-1 C111A,100 pF,1.5 kΩ, 3 times
MM	200 V Min.	EIAJ ED-4701-1 C111,200 pF, 0 Ω, 1 time

[10] Dimensions and marking layout

1) Dimensions

2) Marking layout

- ♦ The above marking layout shows only marking contents and their approximate position and it is not for font, size and exact position.
- ♦ Output frequency shall indicate 6 digits (include decimal point), if the value of frequency over 7 digits, the least significant digits will be omitted.


[11] Notes

- 1) This device is made with C-MOS IC. Please take necessary precautions to prevent damage due to electrical static discharge.
- 2) We recommends a 0.01 μ F to 0.1 μ F capacitor must be connected near Vcc between Vcc and GND to obtain stable operation and protect against power line ripple.
- 3) Vcc and GND pattern shall be as large as possible so that high frequency impedance shall be small.
- 4) We cannot recommend to put filtering element into power line so as to reduce noise. Oscillator might be unstable oscillation because high frequency impedance of power line become higher. When use filtering element, please verify electrical construction and or element's spec.
- 5) We doesn't recommend to power on from intermediate electric voltage or extreme fast power on, Those powering conditions may cause no oscillation or abnormal oscillation.
- 6) Power ripple: 200 mV P-P max. Start up time (0 %Vcc \rightarrow 90 %Vcc) of power source should be more than 150 μ s.
- 7) A long output line may cause irregular output, so try to make the output line as short as possible.
- 8) Other high-level signal lines may cause incorrect operation, so please do not place high level signal line close to this device.
- 9) This device contains a crystal resonator, so please don't expose excessive shock or vibration. We recommends store device under normal temperature and humidity to keep the specification.
- 10) An automatic insertion is available, however, the internal crystal resonator might be damaged in case that too much shock or vibration is applied by machine condition. Be sure to check your machine condition in advance.
- 11) Ultrasonic cleaning can be used on the SG7050CAN, however, since the oscillator might be damaged under some conditions, please exercise in advance.
- 12) We recommends to use and store under room temperature and normal humidity to secure frequency accuracy and prevent moisture.
- 13) ST -pin has pull-up resistor internally. The resistor value is switched depending on input voltage. Please refer to electrical characteristics.
- 14) Lid is electrically connected to GND. Please don't apply electrical voltage.

[12] Recommendable patterning

The soldering pad sample indicated as like following:

Soldering position (Unit: mm)

To maintain stable operation, provide a 0.01 uF to 0.1 uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc - GND).

TAPING SPECIFICATION

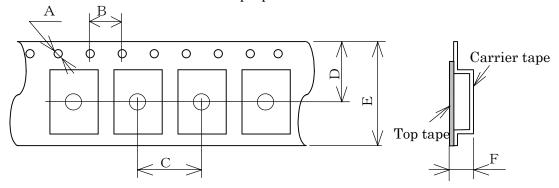
I. Application

This standard will apply to 7×5 Ceramic package.

Spec: CA package

${\rm I\hspace{-.1em}I}$. Contents

Item No.	Item	Page
[1]	Taping specification	1 to 2
[2]	Inner carton	3
[3]	Shipping carton	
[4]	Marking	4
[5]	Quantity	
[6]	Storage environment	
[7]	Handling	

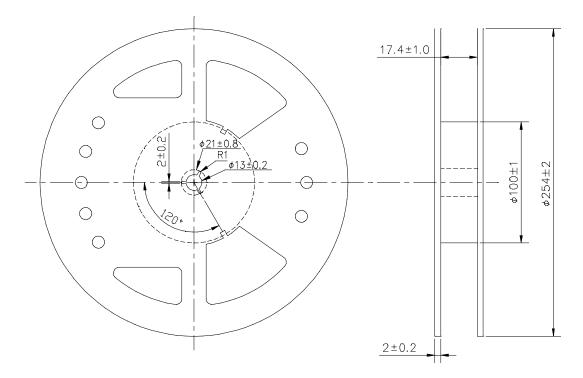

[1] Taping specification

Subject to 「EIA-481」 and 「IEC-60286」

(1) Tape dimensions

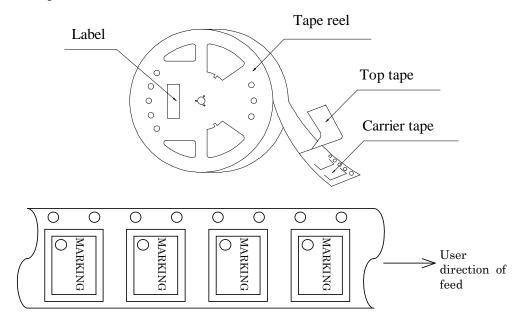
TE-1612L

Material of the carrier tape : PS
Material of the top tape : PET

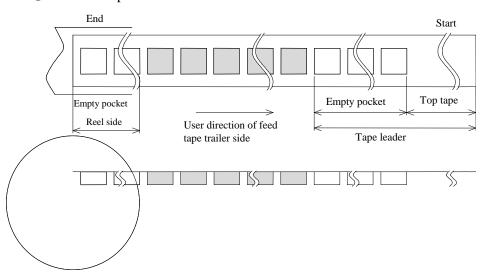


Symbol	A	В	С	D	Е	F
Value	φ 1.5	4.0	8.0	9.25	16.0	2.3

Unit: mm


(2) Reel dimensions

Material of the reel: Conductive polystyrene



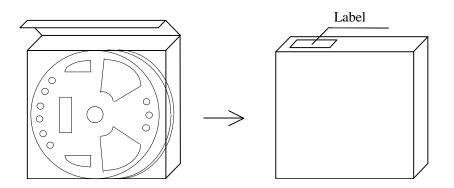
(3) Packing

①Tape & reel

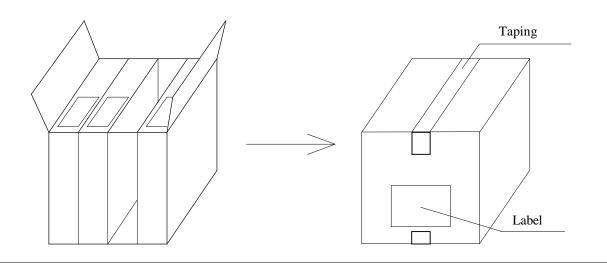
②Start & end point

	Item	Empty space
Tape leader	Top tape	Min. 1 000 mm
	Carrier tape	Min. 160 mm
Tape trailer	Top tape	Min. 0 mm
	Carrier tape	Min. 160 mm

(4) Peel force of the cover tape


- \bigcirc angle : cover tape during peel off and the direction of unreeling shall be 165° to 180°.
- \bigcirc peel speed: 300 mm / min.

[2] Inner carton


a) Packing to antistatic bag

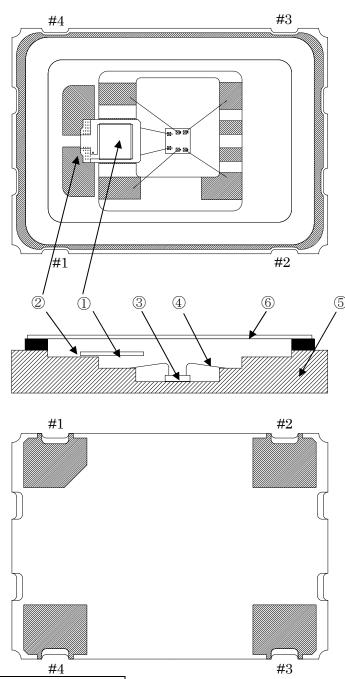
b) Packing to inner carton

[3] Shipping carton

[4] Marking

- (1) Reel marking
 - Reel marking shall consist of:
 - 1) Parts name
 - 2) Quantity
 - 3) Manufacturing date or symbol
 - 4) Manufacturer's date or symbol
 - 5) Others (if necessary)
- (2) Inner carton marking
 - · Same as reel marking.
- (3) Shipping carton marking
 - · Shipping carton marking shall consist of:
 - 1) Parts name
 - 2) Quantity
- [5] Quantity
 - · 1 000 pcs./reel
- [6] Storage environment
 - (1) Before open the packing, we recommend to keep less than +30 °C and 85 %RH of Humidity, and to use it less than 6 months after delivery.
 - (2) We recommend to open Package in immediately before use. After open Package, We recommend to keeps less than 6 month. No need dry air before soldering work if it is less than temperature +30 °C, 85 humidity %RH.
 - (3) Not to expose the sun.
 - (4) Not to storage with some erosive chemicals.
 - (5) Nothing is allowed to put on the reel or carton to prevent mechanical damage.
- [7] Handling
 - To handle with care to prevent the damage of tape, reel and products.

- PROCESS QUALITY CONTROL Preliminaly -


No. SG7050CxN - 00 - ASE - 1

CRYSTAL OSCILLATOR: SG7050CxN

Record Manufacturing process chart Section In Charge Standards Inspection, Instruments Inspection Control Item Methods Purchasing Specification Appearance Dimension Microscope Data sheet Inspection Section Sampling Lid Crystal Incoming Inspection Standard · · · In-coming China Plant Manufacturing Instruction Appearance Microscope Data sheet 100% Inspection Inspection (Production Section) Sheet Data sheet 3 China Plant Manufacturing Instruction Appearance Microscope Sampling 3 Package Set (Production Section) Sheet China Plant Manufacturing Instruction Microscope Sampling Data sheet Appearance 4 Die Attach (Production Section) Sheet Frequency 2) Chip Setting China Plant Manufacturing Instruction Bonding strength Pull tester/Gauge Sampling Data sheet Wire Bonding (Production Section) Sheet Appearance Microscope China Plant Manufacturing Instruction Mounting strength Pull tester Sampling Data sheet **6** Crystal-Mounting (Production Section) Appearance Microscope 100% Inspection Sheet China Plant Manufacturing Instruction Appearance Microscope Sampling Data sheet 7 Frequency Adjusting (Production Section) Sheet Counter Frequency 100% Inspection (Crystal) China Plant Manufacturing Instruction Appearance Microscope Sampling Data sheet Hermetic Sealing (Production Section) Sheet China Plant Manufacturing Instruction High Temp Treatment (Production Section) China Plant Manufacturing Instruction Leakage inspection Measuring equipment Data sheet 100% Inspection (10) Leakage (Production Section) 11 China Plant Manufacturing Instruction Characteristic inspection Measuring equipment 100% Inspection Data sheet (11) LDL Inspection (Production Section) Sheet China Plant Manufacturing Instruction Appearance Visual Inspection Sampling Data sheet (12) Marking (Production Section) Sheet China Plant Manufacturing Instruction Electrical characteristic Measuring equipment 100% Inspection Data sheet Electrical Characteristic (Production Section) Sheet Master Check Inspection China Plant Manufacturing Instruction Electrical characteristic Measuring equipment Sampling Data sheet **⟨14⟩** Temp Characteristic (Production Section) Master Check China Plant Manufacturing Instruction Appearance Microscope 100% Inspection Data sheet Appearance Inspection (Production Section) Sheet Master Check China Plant Delivery Specifications Electrical characteristic Measuring equipment Sampling Data sheet (16) Outgoing Inspection (Production Section) Outgoing Inspection Standard Appearance Microscope China Plant Tape peeling strength Manufacturing Instruction Peeling strength Sampling Data sheet **17** Taping (Production Section) Sheet Frequency check function test machine China Plant Manufacturing Instruction Customers Delivery 18) Packing (Production Section) Sheet Type Slip Daily Shipping List Quantity

Sep.10.2013

Structure diagram SG7050CAN

LIST		
Name of part		Material
1	Crystal chip	AT cut
2	Crystal adhesive	Ag paste
3	IC	C-MOS
	IC conductive adhesive	Ag paste
4	Bonding wire	Au
(5)	Package	Ceramic (Al ₂ 0 ₂)
6	Cap	Kovar