

CUSTOMER	聯發科技
PRODUCT TYPE	Quartz Crystal HSX221SR
NOMINAL FREQUENCY	26.00000MHz
H.ELE. SAMPLE O/N	EOS-H70373-1
H.ELE. P/N	X2R026000BZ1HAZ-DHPZ
RELEASE DATE	2017/08/11
VERSION	04
MSL	Level 01
GREEN PRODUCT	☑ Pb free ☑ RoHS Compliant
	🗹 HF-Halogen free 🗹 REACH Compliant
CUSTOMER P/N	
APPLICATION & MODEL	MT6739
APPROVED BY CUSTOME	R
	(DATE)

Harmony E	lectronics C	Corp.		
	N. LEE U. F. CI HECK) (PREPA		Country of Origin:	Taiwan Factory Thailand Factory China Factory
	HARMONY	ELECTRO	NICS CORPRATIO	N
KAOHSIUNG	ΤΑΙΡΕΙ	THAILAN	ND SHENZHEN	Suzhou
TEL: 886	5-2-26588883		Email: contactus@	hele.com.tw

REV. No.	DATE	REASON	REVISE CONTENTS
0	2017/08/01	New	
1	2017/08/02		1-2410 to 60°C→1-24. Freq.slope error(-10 to 60°C)
			1-2530 to 85°C→1-24. Freq.slope error(-30 to 85°C)
			1-2640 to -30°C→1-24. Freq.slope error(-40 to -30°C)
			Add 1-25. Full Cycle Temperature Hysteresis
			Add 1-26. Small Cycle Temperature Hysteresis
			1-27. Frequency Stability Slope 1
			→ Full Cycle Frequency stability slope
			1-28. Frequency Stability Slope 2
			\rightarrow 5°CSmall Cycle Frequency stability slope
			1-29. Frequency Hysteresis
			→ 5°CSmall Cycle Frequency stability slope
2	2017/08/03		3. MARKING →Add PIN1 Marked
			4. INSIDE STRUCTURE →Add PIN1 Marked
			5. HANDLING SUGGESTION: (1) Preheat 160°180deg.C 120 sec. (2) Primary heat ≥=220 deg.C 60°120 sec. (3) Peak 260 deg.C 10 sec. Max. Manual Solder iron (Example): Bit temp.: 350°C max., Time: 3sec max., Each terminal only shoul be soldered once. →Use a 400°C soldering iron in contact with terminal electrod for four seconds. Repeat Twice.
			9-1 Resistance of Soldering Heat: Change chart
			APPLICATION & MODEL: add MT6739
			1-20 Notes : After two reflows
3	2017/08/10		→ After two reflows (0.5hr freq. drift subtract 168hr freq. drift)
			1-29 Delete
4	2017/08/11		1-24 Delete
			1-25 Full Cycle Temperature Hysteresis: 0.5ppm Max. →±0.5ppm Notes : Ta=-30°C to 85°C for each 1deg.c.(Temp. rate: ~1.0°C/min) →Temp. range:-30°C to 85°C for each 1deg.c. Temp. rate: ~1.0°C/min Test flow: 25°C(1)->-30°C->85°C->25°C(2) (25°C(1) freq. drift subtract 25°C(2) freq. drift) 1-26 Small Cycle Temperature Hysteresis: 0.05ppm Max. →±0.05ppm Notes : Temp.range:-30°C to 85°C for each 0.5deg.c. →Temp. range:-30°C to 85°C for each 0.5deg.c.
			Temp. rate: ~1.0°C/min
			Test flow: any 5°C cycle (ex.25°C(1)->-30°C->25°C(2), 25°C(1) freq. drift subtract 25°C(2) freq. drif

HARMONY ELECTRONICS CORPRATION

KAOHSIUNG TAIPEI THAILAND SHENZHEN SUZHOU
TEL: 886-2-26588883 Email: contactus@hele.com.tw

Contents

ITEM	PAGE				
1. QUARTZ CRYSTAL UNIT SPECIFICATION					
2. DIMENSIONS	3				
3. MARKING	3				
4. INSIDE STRUCTURE	4				
5. HANDLING SUGGESTIONS	4-5				
6. EMBOSS CARRIER TAPE&REEL	5-6				
7. PACKAGE	6-7				
8. MECHANICAL PERFORMANCE	7-8				
9. ENVIRONMENTAL PERFORMANCE	8				
10. APPENDIX					

HARMONY ELECTRONICS CORPRATION

Kaohsiung Taipei Thailand Shenzhen

Email: contactus@hele.com.tw

Suzhou

........

1. QUARZ CRYSTAL UNIT SPECIFICATION

		Elec	ctrical Spe	ec.		
ltems	Min	Туре	Max	Unit	Notes	
1. Frequency (FL)	26.000000			MHz		
2. Mode of oscillation:		Fu	undament	tal		
3. Frequency tolerance		-10		+10	ppm	at 25°C±3°C
4. Equivalent resistance (RR)				50	Ω	SERIES
5. Storage temperature range		-40		+105	°C	
6. Operable temperature range		-30		+105	°C	
7. Temperature stability		-12		+10	ppm	-30°C ~+85°C
8. Loading capacitance (CL)			7.0		pF	
9. Drive level (DL)		10	50	100	μW	
10. Shunt Capacitance (CO)				2.0	pF	
11. Insulation resistance		500			MΩ	at DC 100V
12. Aging:		-0.7		+0.7	ppm/Year	
		-1.4		+1.4	ppm/2Years	
		-2.5		+2.5	ppm/5Years	25℃±2℃
		-5		+5	ppm/10Years	
13. Pulling Sensitivity		-10%	15.0	+10%	ppm/pF	
14. DLD2				2.5	Ω	
15. FDLD				3.5	ppm	
16. DLDH2				1.5	Ω	10nW ~ 100uW, step ratio is $\sqrt{10}$
17. FDLDH				0.7	ppm	
18. SPUR		500			Ω	±500KHz
19.Q		75000				
20. Frequency Drift After Reflow		-2		+2	ppm	After two reflows (0.5hr
					freq. drift subtract 168hr	
						freq. drift)
21. Inflection Point	29	30.5	32	°C	T=T0-C2/3C3	
22. Room temp(T0)		30.5		°C		
23. S curve 3 order curve fitting	23. S curve 3 order curve fitting C1		-0.25	-0.1	ppm/°C	Ta=-40°C to 85°C per 1deg.c
coefficient (@25 $^\circ$ C)	C2	-4.5	0	4.5	e ⁴ -ppm/°C ²	
	C3	8.7	9.85	11	e⁵-ppm/°C³	

HARMONY ELECTRONICS CORPRATION

KAOHSIUNG

.

ΤΑΙΡΕΙ

THAILAND

Shenzhen

Email: contactus@hele.com.tw

25. Full Cycle Tempe	rature Hysteresis					Temp. range:-30 $^\circ\!\!\mathbb{C}$ to 85 $^\circ\!\!\mathbb{C}$
						for each 1deg.c.
						Temp. rate: ~1.0°C/min
		-0.5		0.5	ppm	Test flow: 25°C(1)->-30°C->85
						°C->25°C(2)
						(25°C(1) freq. drift subtract 25
						°C(2) freq. drift)
26. Small Cycle Temp	perature					Temp. range:−30°C to 85°C
Hysteresis						for each 0.5deg.c.
						Temp. rate: ~1.0°C/min
		-0.05		0.05	ppm	Test flow: any 5°C cycle
						(ex.25°C(1)->-30°C->25°C(2),
						25°C(1) freq. drift subtract 25
						°C(2) freq. drift)
27. Full Cycle Freque	27. Full Cycle Frequency stability slope					Ta=-30°C to 85°C for each
						1deg.c.(Temp. rate:
		-50		50	ppb/deg.C	~1.0°C/min)
						(difference from fifth-order
						curve fit)
28. 5℃Small CycleFr	equency stability					Ta=-30°C to 85°C for each
slope		-50		50	nnh/dog (0.5deg.c.(Temp. rate:
		-50		50	ppb/deg.C	~1.0°C/min)(difference from
						fifth-order curve fit)
	Resistance		100		kΩ	TA=+25°C
30. Thermistor	B-constant		4250		K	+25°C - +50°C
	Tolerance	-1		1	%	
31. Circuit:	Meas	ured in HI	P/E5100A,			

HARMONY ELECTRONICS CORPRATION

.

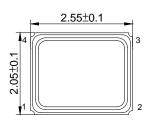
KAOHSIUNG

ΤΑΙΡΕΙ

THAILAND

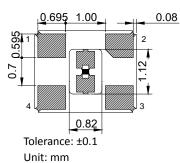
SHENZHEN

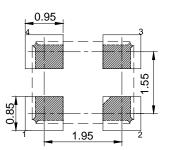
Email: contactus@hele.com.tw


SUZHOU


.

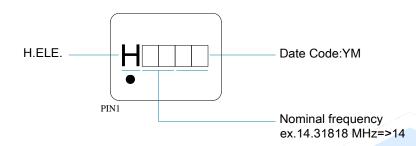
2. DIMENSION


TOP VIEW



Land Pattern Layout

BOTTOM VIEW



Pin Connections					
#1	Crystal				
#2	GND/Lid				
#3	Crystal				
#4 Thermistor					
2 GND(connection Cover)					

* Note: The Index mark was defined by the BASE suppliers.

TOP VIEW

3. MARKING

Note:

1. Laser marking.

2. Date Code:

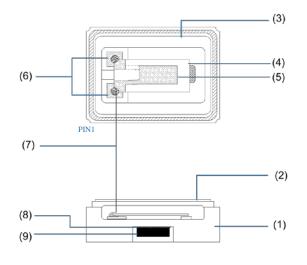
		ouc.										
ſ		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
	Y=Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	
	Code	0	1	2	3	4	5	6	7	8	9	

M=Month	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Code	А	В	С	D	E	F	G	Н	J	K	L	M

HARMONY ELECTRONICS CORPRATION

KAOHSIUNG

ΤΑΙΡΕΙ


THAILAND

Su

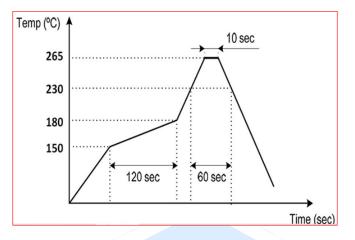
Email: contactus@hele.com.tw

4. INSIDE STRUCTURE

No.	Component	Material	Note
(1)	Base-Ceramic	Ceramic	Al ₂ O ₃
(2)	Lid	Metal	Fe- Ni -Co
(3)	Kovar	Metal	Fe- Ni -Co
(4)	Crystal Blank	Quartz	SiO ₂ Rectangular At-Cut
(5)	Electrode	Metal	-
(6)	PAD	Metal	W Ni Plating Au Plating
(7)	Connective Adhesive	Silver Powder	Ag
(8)	Eco Solder Paste	Composite	Sn, Ag, Cu
(9)	Thermistor	Ceramic	Ceramic Cu- Ni- Sn

※The use prohibition chemistry substance of Table 1 of DHE-0204-1 (HE-QA-24) is not included in this item.

5. HANDLING SUGGESTION


Reflow Conditions

Please stay with our proposed reflow conditions and do soldering within 2 times.

(1)	Preheat	150~180deg.C	120 sec.					
(2)	Primary heat	230deg.C min.	60 sec.					
(3)	Peak	265deg.C max.	10 sec. Max.					

Manual Solder iron (Example)

Use a 400 $^\circ\! \mathbb{C}$ soldering iron in contact with terminal electrode for four seconds. Repeat Twice.

Mounting Conditions

Our products are suitable for most automated SMT processes. However, we strongly advise all our customers to conduct SMT sampling prior to mass production in order to make sure production processes will not affect the properties and specifications of our product. Seal welding and mounting procedures involving the use of ultra-sonic processes are not recommended and will affect and/or damage the internal properties of our product. Excessive shock during the mounting process will also affect the product and we strongly recommend setting SMT conditions to minimize such conditions.

If a possibility of the PCB being warped exists we strongly advise to ensure the degree of warping will not affect the product.

Please also ensure the operating characteristics and or soldering conditions are all within the specifications of use for our product.

Ultimately the worst case scenario of all the above will lead to cases of non-oscillation but

HARMONY ELECTRONICS CORPRATION

KAOHSIUNG TAIPEI

THAILAND

Suzhou

SHENZHEN

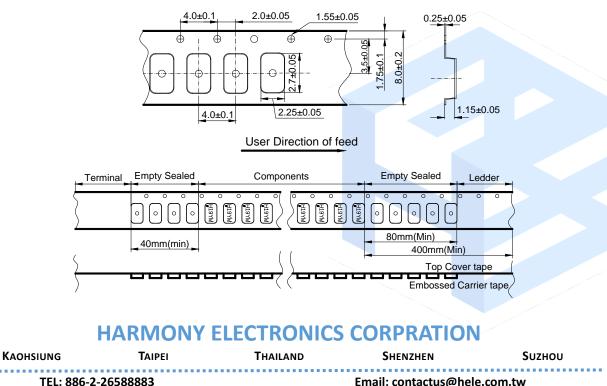
Email: contactus@hele.com.tw

other negative effects are also likely should our products be used in an inappropriate way. Please note such cases of misuse and its related quality issues are not included in our product warranty.

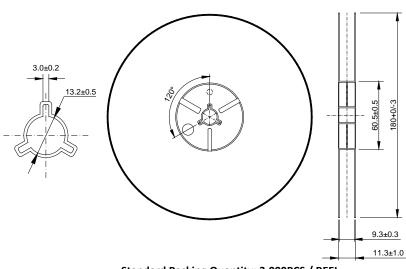
Cleansing Conditions

General cleaning solutions may be used to clean our products but we always recommend testing to be performed prior to mass production processes. Ultrasonic cleaning procedures are not recommended and we strongly advise other forms of cleansing to be evaluated first. Unsuitable cleansing may lead to a number of negative effects such as damage to the product surface, discoloration of the product, corrosion of the package, package contamination, illegible marking, etc. Please note cases of unadvised treatment and its related quality issues are not included in our product warranty.

Storage Conditions


Please ensure our products are preserved appropriately in their original packaging. Irregular environmental instances of moisture will affect our product's stability and may cause problems such as frequency instability, soldering ability and conditions, package defects, and other problems. It is essential to keep our products in a clean dust-free environment out of direct sunlight.

Our products' storage conditions should at least meet the following condition: Environmental Temperature: + 40 degrees Celsius Maximum Relative Humidity: 80% Maximum


Please note storage instances which do not conform to our guidelines and the related quality issues produced as an outcome are not included in our product warranty.

6. EMBOSS CARRIER TAPE AND REEL

Carrier Tape

Standard Packing Quantity: 3,000PCS / REEL

Material of The Tape

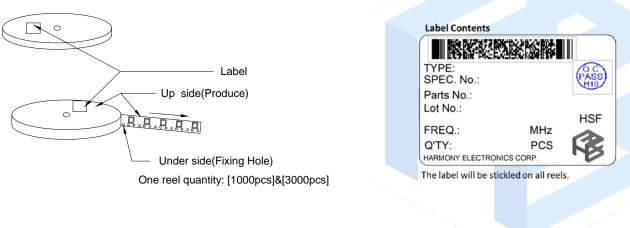
-			
Таре	Material		
Carrier tape	PS Conductive		
Top tape	PET		

Joint of tape

The carrier-tape and top cover-tape should not be jointed.

Release strength of cover tape

The force should be controlled between 0.1N to 0.7N under following condition. Pulling direction: 165° to 180° Speed: 300mm/min. Otherwise unless specified.

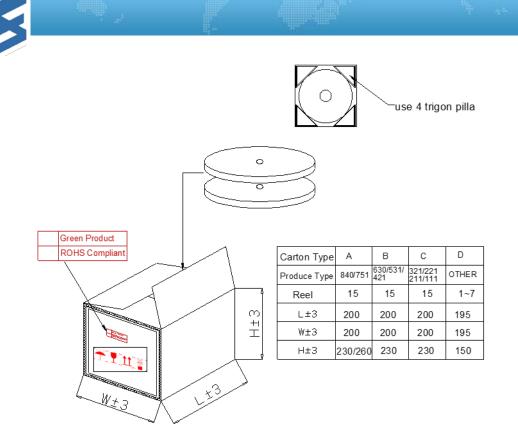


Other standards shall be based on JIS C 0806-1990.

SHENZHEN

Email: contactus@hele.com.tw

7. PACKAGE


HARMONY ELECTRONICS CORPRATION

KAOHSIUNG

ΤΑΙΡΕΙ

THAILAND

6

(1)Top and bottom with 2.3cm thickness

- foam-rubber cushion for protection.
- 2 Carton's Q'TY:1~15 pcs.
- ③Carton Type=A,B,C use 4 trigon pillar to fasten the Reel.
 ④Need to add 3 pages dry agent in each outer box.

8. MECHANICAL PERFORMANCE

Item		Test Methods		Specifications Code
1	Shock	Dropping from 120 cm height 3 times on 30 mm Concrete floor. Refer to: JIS C 60068-2-6		А
2	Vibration	Frequency 10-55Hz, Sine Wave full amplitude of 0.8mm to X, Y and Z 3 axes, 2 cycles and duration of 2 hours to each direction. Refer to: MIL-HDBK-781A 6.5.2/ JIS C 60068-2-6		А
3	Leakage Test	Leak Rate 1.0x10 ⁻⁹ Pa-m ³ /sec. Max. Measured by Helium leak detector.		
4	Solder ability	After applying ROSIN Flux, dipping in solder bath at 245deg.C ±5deg.C for 3 ±0.5 sec. Refer to: JIS C 60068-2-20		В
5	Bending Strength	Mount a sample on board. Apply Pressure to the center of board until it is bent to 3 mm and hold for 5 ±1 sec. Pressure speed: 0.5 mm/sec. Refer to: EIAJ ET-7403	Pressure rod 20 \mathbb{R}^{230} \mathbb{R}^{23	A

HARMONY ELECTRONICS CORPRATION

KAOHSIUNG

ΤΑΙΡΕΙ

THAILAND

SHENZHEN

Email: contactus@hele.com.tw

SUZHOU

6	Adhesion	Mount a sample on the circuit board. Apply pressure vertically to the side of specimen attached to the circuit board with the pressure jig. Pressure: 5N for 10±1 sec. Refer to: EIAJ ET-7403	Scratch tool R0.5 Chip Chip Chip	A
7	Body strength	Apply pressure to the center of body with the R0.5 pressure jig. pressure :10N for 10±1sec Refer to: EIAJ ET-7403	$\begin{array}{c c} & Pressure rod \\ \hline Pressure \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	А

9. ENVIRONMENT PERFORMANCE

	Item Test Methods		Specifications Code
1	Resistance of Soldering Heat	Performing as the following reflow:	A
2	Humidity	Temperature 60°C±2°C, RH 90~95%, duration of 240 hours. Back to room temperature first, then check the component after 1~2 hours. Refer to: JIS C 60068-2-3	А
3	Storage in Low Temperature	-40deg.C ±2deg.C, duration of 240 hours. Back to the room temperature first, then check the component after 1~2 hours. Refer to: JIS C 60068-2-1	А
4	Storage in High Temperature	+85deg.C ±2deg.C, duration of 240 hours. Back to the room temperature first, then check the component after 1~2 hours. Refer to: JIS C 60068-2-2	A
5	Temperature cycles	-40deg.C ±2deg.C (30min) \leftrightarrow +85deg.C ±2deg.C (30min) 25 cycles. And Temperature Increasing/reducing time < 3mins. Back to the room temperature first, then check the component after 1~2 hours. Refer to: JIS C 0025	A

Specifications code	Specifications	
А	Frequency variation shall be within ±5ppm and equivalent resistance shall be within	
	±15% or 2Ω	
В	More than 90% of lead shall be covered by new solder.	

HARMONY ELECTRONICS CORPRATION

KAOHSIUNG

ΤΑΙΡΕΙ

THAILAND

Suzhou

.

Email: contactus@hele.com.tw

SHENZHEN

FACTORY LOCATION

HEAD OFFICE/TAIWAN FACTORY

No.39, Huadong Rd., Daliao Dist., Dafa Industrial Park, Kaohsiung City 831, Taiwan (ROC).

CHINA FACTORY

Ju Yuan Industrial Park, Qiao Tang Road, Tang Wei Community, Fuyong, Baoan District, Shen Zhen City, China (Post Code:518103)

THAILAND FACTORY

66moo 5, Kaongu-beokprai Rd., t.beokprai, A. Banpong, Ratchaburi Province 70110, Thailand.

SERVICE CENTER

TAIPEI OFFICE

2F., NO.409, SEC.2, TIDING BLVD., NEIHU DISTRICT, TAIPEI CITY 114, TAIWAN TEL: 886-2-26588883 FAX: 886-2-26588683

CONTACT INFORMATION

E-MAIL: contactus@hele.com.tw

