SEIKO EPSON CORPORATION HIROOKA OFFICE

RECIPIENT

SPECIFICATIONS

MODEL : RTC-9825B SA

SPEC. No. : Q12-250-1B2

DATE: Mar. 28. 2013

SEIKO EPSON CORPORATION

8548 Naka-minowa Minowa-machi Kamiina-gun Nagano-ken 399-4696 Japan

CHECKED	H.boike	/ TD Production Engineering Department Manager
_	Hideki Koike	

CHECKED 7. Tonouchi / TD Production Engineering Department Senior Staff Tetsuji Tonouchi

CHECKED H, Mataumoto	/ TD·CS Quality Assurance Department Manager
Kazuki Matsumoto	

7. Hummigano / TD·CS Quality Assurance Department Senior Staff PREPARED Takashi kurumizawa

Update History

Date	Page	Item	Current	Update
Mar.28,2013			New Issue	

SPECIFICATIONS

Application 1

- 1) This document is applicable to the crystal unit that are delivered to SEIKO EPSON CORPORATION HIROOKA OFFICE from Seiko Epson Corp.
- 2) This product complies with RoHS Directive.
- 3) You are requested, if applicable, to obtain all necessary licenses for the export of this product(s)

(including any technical information furnished, if any) under Foreign Exchange and Foreign Trade Law.

You are requested not to export this product(s) in order to use it for development and/or manufacture of weapons of mass destruction or for other military purposes. Exporting this product(s) in order to make it available to any third party who uses or may use this product(s) for such purposes are also prohibited.

4) This product listed here is designed as components or parts for electronics equipment in general consumer use. We do not expect that any of these products would be incorporated or otherwise used as a component or part for the equipment, which requires an systems, and medical equipment, the functional purpose of which is to keep extra high reliability, such as satellite, rocket and other space life.

2. Model

The model is RTC-9825B SA.

3. Packing

It is subject to the packing standard of Seiko Epson Corp.

4. Warranty

Defective parts which are originated by us are replaced free of charge in case defects are found within 12 months after delivery.

Amendment and abolishment 5.

Amendment and/or abolishment of this specification are subject to the agreement between both parties.

6. Contents

Item No.	Item	Page
[1]	SA Terminal connections	2
[2]	Block diagram	3
[3]	Absolute maximum ratings	4
[4]	Operating range	4
[5]	Oscillation characteristics	4
[6]	DC characteristics	5
[7]	AC characteristics	5
[8]	VEX voltage detection characteristics	6
[9]	Reset voltage detection characteristics	6
[10]	Nonvolatile Memory characteristics	6
[11]	Timing chart	7
[12]	External voltage detection circuit	8
[13]	External reset circuit (RST Output control function)	9,10
[14]	Internal Reset Function	11,12,13
[15]	Voltage Regulator control function	13
[16]	Serial data transfer format	14,15
[17]	Access to Nonvolatile Memory (EEPROM)	16
[18]	Register Functions Description	17,18
[19]	Timer logic	19
[20]	Operation condition of each function	19
[21]	External diagram / Marking layout	20
[22]	Environmental and mechanical characteristics	21
[23]	SEIKO EPSON reflow profile	22
[24]	External connection examples	23,24
[25]	Notes on handling	25
[26]	An example of the initialization	26

7. Production Country

Crystal Unit

0. 90						
	Country	Plant	Addles			
	Japan	n INA plant 8548 Nakaminowa,Minowa-machi,Kamiina-gun,Naga				
	China	China ETSZ No.144, Hua Shan Road, Suzhou New District, Suzhou, Jiangsu Chi				
	Malazzaia	EDMV	Lot 1, Jalan Persiaran Industri, Taman Perindustrian			
	Malaysia	EP WI I	Sri Damansara, Sungai Buloh,52200 Kuala Lumpur			
RTC						
	Country Plant		Addles			
	Japan	KATOH Electric Co., Ltd.	6392 Kamiyoshida,Fujiyoshida-shi,Yamanashi,Japan			
	Japan	AOI ELECTRONICS CO/, LTD.	455-1 Takamatsu-shi,Kagawa,Japan			
Crys	tal chip (Wafer	·)				
	Country	Plant	Addles			
	Japan MIYAZAKI plant		1860, Hei, Imaizumi, Kiyotake-cho, Miyazaki-shi, Miyazaki 889-1602, Japan			
	Japan	AKITA EPSON CORP.(AEC)	1, Dannoue, Iwasaki-Aza, Yuzawa-City, Akita-Ken 012-0801 Japan			
10	Chin					

Спір		
Country	Plant	Addles
Japan	Fujimi Plant	281 Fujimi,Fujimi-chou,Suwa-gun,Nagano,Japan

[1]SA Terminal connections

Custom logic + EEPROM + voltage detection (2 circuits) + FRST

No.	Name	I/O	Comments	No.	Name	I/O	Comments
1	N.C.	0	Test output ^{*1}	14	VDD		Power supply
2	DO	0	Serial data output	13	FRST	1	Forced reset
3	DI	1	Serial data input	12	VI5	AIN	Voltage detection at 5 V
4	CLK	1	Serial clock input	11	RST	O.D.	Reset output
5	CE	1	Serial chip enabled	10	VEX	AIN	Input pin for detecting
							external voltage
6	IRQ	N.C.	It is not connected inside	9	EXO	O.D.	Output pin for detecting
							external voltage
7	GND		Power Supply	8	VDD2		Backup power supply

*1 Be sure to leave N.C. pin Open (unconnected).

*2 VDD2 is in an open state, and RTC can work.

*3 Be sure to connect a filter capacitor of at least 0.1 μF near VDD–GND and VDD2–GND. Can replace it with RTC-9825B SA in a circuitry same as RTC9825SA substituting filter capacitor between VDD2-GND with a large-capacity condenser for backup.

- *1. Terminate the input (Do not leave them in the Hi-z state.)
- *2. Be sure to keep free N.C terminal and IRQ terminal. (unconnected)
- *3. Higher voltage either of VDD or Vcore is supplied to Vcore2 through "Power S.W.1"
- *4. Higher voltage either of VDD or VDD2 is supplied to Vreg through "Power S.W.2".

[3] Absolute maximum ratings

		5		GND=0 V
Item	Symbol	Condition	Rating	Unit
Power supply voltage	Vdd	_	-0.3 to 4.5	V
	Vdd2	_	-0.3 to 6.0	V
Input voltage	Vin	Input pin	GND-0.3 to V _{DD} +0.3	V
	Vain	Analog input pin	-0.3 to 6.0	V
Output voltage	Vout	EXO,DO	GND-0.3 to V _{DD} +0.3	V
Storage temperature	Tstg	_	-55 ~ +125	٦°

[4] Operating range

Item	Symbol	Condition	Range	Unit
Operation power	Vdd	When using NVMEMORY or	2.7 to 3.6	V
supply voltage		communicating		
RTC power	Vdd2		1.8 to 5.5	V
supply voltage				
Timekeeper voltage range	Vdd2t	Power voltage that is able to do continuous time counting with RTC after starting oscillation (1.8V≤VDD2) even if makes dropping of VDD2	1.4 to 5.5	V
Operation temperature	Topr	No condensation	-40 to +85	°C

[5] Oscillation characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation	fo	Ta=+25 °C, VDD2 or VDD=3.0 V		32.768		kHz
frequency						
Frequency precision	∆Fout/fo	Ta=+25 °C, V _{DD2} or V _{DD} =3.0 V	-1000		+1000	×10 ⁻⁶
Oscillation start	t _{STA}	Ta=+25 °C,			1	S
time		V _{DD2} =1.8 V to 5.5 V or				
		VDD=2.7 V to 3.6 V,FRST=Low				
		Ta=±0 °C to 40 °C			0.425	S
		V _{DD2} =2.2 V to 5.5 V or				
		V _{DD} =2.7 V to 3.6 V,FRST=Low				
Frequency /	T _f	Ta=-20 °C to +70 °C,	-120		+10	×10⁻⁰
temperature		standard is +25 °C				
characterictics						
Frequency /	f/V	Ta=+25 °C, VDD2=1.8 V to 5.5 V	-2		+2	×10 ⁻⁶ /V
voltage		or V _{DD} =2.7 V to 3.6 V				
characteristics						
Aging	fa	Ta=+25 °C	-5		+5	×10 ⁻⁶ /Year

[6] DC characteristics

If not specifically indicated: GND = 0V, VDD = 2.7 V to 3.6 V, VDD2 = 1.8 V to 5.5 V, Ta = -40 °C to +85 °C						
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
VDD current	IDD1	VDD =3.0 ,VI5=5.0 V		30	100	μA
consumption	IDD2	VDD=3.0V, VI5=5.0V Inrush current at the time of the VDD power-on.		3	10	μA
VDD2 current consumption	Івк1	VDD=VI5=0 V, VDD2=5.5 V , FRST=Low , Ta=-20 °C to +70 °C		0.45	0.6	μA
	Івк2	VDD=VI5=0V , VDD2=5.5V , FRST=Low Ta=-20°C to +70°C Inrush current at the time of the VDD2 power-on		3	10	μA
	Івкз	VDD=3.0V , VI5=5.0V, VDD2=5.5V , FRST=Low Ta=-20°C to +70°C		0.55	3	μA
Input voltago	Vін	CE,CLK,DI,FRST	0.8VDD		Vdd	V
input voltage	VIL	CE,CLK,DI,FRST	0		0.2Vdd	V
VI5 Input voltage	VI5det	VI5	0.30		0.80	V
Input leakage current	Ilk	CE,CLK,DI VIN= VDD or GND	-0.5		0.5	μA
Output leakage current	loz	DO VOUT= VDD or GND	-0.5		0.5	μA
DO output voltage	Voh2	IOH= -1 mA	VDD-0.4			V
	Vol2	IOL= 1 mA			GND+0.4	V
O.D. output voltage	Vol3	EXO IOL= 1 mA			GND+0.4	V
O.D. output voltage	Vol4	RST IOL= 2 mA			GND+0.4	V

* Typ. : Only reference value.

[7] AC characteristics

If not specifically indicated: GND = 0 V, VDD = 2.7 V to 3.6 V, VDD2 = 1.8 V to 5.5 V, Ta = -40 °C to +85 °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
CLK clock cycle	t _{CLK}		750			ns
CLK H pulse width	twн		350			ns
CLK L pulse width	t _{WL}		350			ns
CE setup time	tcs		100			ns
CE hold time	t _{CH}		100			ns
CE recovery time	t _{CR}		100			ns
CE enable time	t _{WCE}		-		1	S
Write data setup time	t _{DS}		150			ns
Write data hold time	t _{DH}		150			ns
Read data delay time	t _{RD}	CL=50 pF			300	ns
DO output mode switching time	t _{ZR}				20	ns
DO output disable time	t _{RZ}	CL=50 pF,RL=10 kΩ			20	ns
DI/DO conflict circuit time	tzz		0			ns
Ready setup time	trdy		20			ns
Input rise/fall time	t _{r/tf}	20% to 80% of VDD			10	ns
Time update Busy*	tcarry	X'tal=32.768 kHz			7.8125	ms

The Busy signal is 2 kinds OR output of "Writing to EEPROM" and " During the time updating of the Long timer". Accordingly, there is the possibility that the longest Busy signal becomes 11.8125 ms.

Note: About level-change of signals except data communications.

When a level of each communication line changes besides serial data communication, there is a case to produce communication error. Don't change the level of CLK, when CE is HI and the before and after 100ns. By a case, data-hold function acts, and there is the case that clock data delay

[8] VEX voltage detection characteristics

-				
If not an additionally i	ndiantadi CND - 01	/ //>>=0 7 // 2 6	$/ \rangle / E = / E \rangle / to E E \rangle$	
If not specifically r	figure a lea . GND = 0	v, vdd=2.7 v ~ 3.6v	7, vis = 4.5 v lo 5.5 v	', Ta = -20 °C to +70 °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
EXO output delay time	tнx				2	μs
Reset LOW time	t LDL				1.5	μS
Voltage detection	Vdt3	VEX pin* ²		2.0		V
	Vdt3n	* ¹ * ² When initial power-on or when level of VDD,VI5 are not decided	1.75		2.1	
Voltage detection precision		Ta=-40 °C to +85 °C	-4		+4	%
Hysteresis voltage	VHIS		30	50	100	mV
EXO Low Active lower voltage	VACT	IOL=1 mA , VOL=0.4 V		1.4		V
Unresponsive time					1.5	μS

*1. When starts up VDD, VI5 and VDD2 from 0V (in case trimming data of reference voltage for voltage detection circuit is not loaded to register)

*2. Detection voltage in case of falling voltage.

[9] Reset voltage detection characteristics

If not specifically indicated: GND = 0 V, VI5 = 4.5 V to 5.5 V, Ta = -20 °C to +70 °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset delay time	thdl	* ^{2*5} when oscillating	94		125	ms
		VDD2=1.8 V to 5.5 V				
	t HDLN	*3*5 When initial power-on	94		550	ms
		Ta=±0 °C to +40 °C				
		VDD2=2.2 V to 5.5 V,FRST=Low				
VDD voltage detection	VRST	^{*5} For 3V	2.4	2.5	2.6	V
	VRSTN	* ^{4*5} When up initial power-on	2.15		2.60	V
VI5 voltage detection	VI5	^{*5} For 5V	4.0	4.2	4.4	V
	VI5N	* ^{4*5} When initial power-on	3.60		4.40	V
Hysteresis voltage	Vhis		30	50	100	mV
RST Low Active lower voltage	VACT	IOL=1 mA , VOL=0.4 V		1.4		V
Reset LOW time	tLDL1	Input the following pulse:			4	μS
Unresponsive time		VDD = 3.0 V to 2.0 V			2	μS
Reset LOW time tLDL2		Input the following pulse:			1	μS
Unresponsive time		VI5 = 4.5 V to 3.5 V			1	μS

*2. *3. Please refer to item [13] external reset circuit.

*4. When starts up VDD, VI5 and VDD2 form 0V (in case trimming data of reference voltage for voltage detection circuit is not loaded to register)

*5.Detection voltage in case of falling voltage.

[10] Nonvolatile Memory characteristics

If not specifically indicated: GND=0 V, VDD=2.7 V ~ 3.6 V,VI5=0.3V ~ 0.8V over,VDD2=1.8 V ~ 5.5 V, Ta=-20°C

						~ 10 0
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Memory structure			4 kb	it(254×16	6 bit)	
Program/Erase Cycle			100000			cycles
Current consumption	IDD3	Write to NVMEMORY			1.5	mA
	IDD4	Read to NVMEMORY			0.4	mA
Access time	t _{wnv}		1.9		2.2	ms

* After writes to the nonvolatile memory are completed, be sure to wait at least TWNV before turning OFF the power.

[11] Timing chart

11.1 Read & Write Timing (for Custom mode)

During data transfer, carry operations are put on hold, and a Busy signal (0: Busy / 1: Ready) is output from DO immediately after communication starts (CE = HIGH). When the pin is in the ready state, communication is possible. When the pin is in the busy state, a time up date or write to nonvolatile memory are being performed. If this occurs, wait until the pin goes into the ready state, or terminate communication momentarily (CE = LOW) and restart after waiting for a fixed period. If data is transferred while the pin is in the busy state, data cannot be guaranteed. The Busy signal goes into the Hi-z state at the first falling edge of CLK.

*1. Address and data width differ for RTC mode and Nonvolatile Memory mode.

- *2. When using a wired OR for DI and DO signals, allocate time (tzz) so that bus conflict is avoided.
- *3. DI data "latches" to the positive edge.
- *4. DO data is output to the negative edge in Custom mode, and the positive edge in EEPROM mode. By setting the strobe point immediately before^{*5} the negative edge.
- *5. Do not access while RST = "L".
- *6. When initial power is input and after falling voltage, register is unstable condition, therefore Ready signal is not output as the case may be. Please confirm Busy signal after input power and starting oscillation, access in disregard of Busy signal if Busy signal of over 11.9ms is output and try to do "0" clear of TEST bit. After that, please surely initialize all timer register. Access to EEROM concerned, please refer to item [17].

11.2 Nonvolatile Memory Timing (Post Write Check)

[12] External voltage detection circuit

Circuit to detect voltage that is input to VEX terminal. Output detected result to EXO terminal, and control EXF flag. If the voltage input to VEX terminal becomes higher than VDT3-VHYS, EXO terminal becomes to Hi-z. EXF flag is not changed. If the voltage input to VEX terminal becomes lower than VDT3, EXO terminal output Low. In this case, EXF flag becomes to "1". EXF flag keeps "1" until "0" has written.

Outer voltage detecting circuit works when meet all the following conditions.

1) VDD=2.7 V to 3.6V or VDD2=1.8V to 5.5V

2) In case oscillation circuit is worked and when 32kHz clock is propagated to internal circuit.

[13] External reset circuit (RST Output control function)

Detect voltage level for both VDD and VI5, and control RST output. If VDD voltage becomes more than VRST(VRSTN) and VI5 voltage becomes more than VI5(VI5N), RST output changes over from Low output to Hi-z after reset delay time (tHDL). And if makes FRST terminal input (forced reset input) to High when VDD voltage is more than VRST and VI5 voltage is more than VI5, RST output changes over to Low output. Then if returns FRST terminal input to Low, it becomes to Hi-z after reset delay time (tHDL).

External reset circuit works if meet the following condition.

- 1) VDD=2.7 V to 3.6V
- 2) VI5=4.5 V to 5.5V
- 3) In case oscillation circuit is worked and when 32kHz clock is propagated to internal circuit.

- *1 If level of VDD and VI5 is decided, trimming of detecting voltage is loaded and detecting voltage (VRST,VI5) is fixed. If level of VDD or VI5 is uncertainly condition, an initial value is set (VRSTN,VI5N).
 - (Please refer to Item [14] IC Internal reset function).

If start up VI5 to voltage between 0V and [VI5N to VI5] when detecting voltage in RTC is VI5N≤VI5, or if start up VDD voltage to voltage between 0V and [VRSTN to VRST] when detecting voltage in RTC is VRSTN≤VRST, voltage detecting operation may be looped between VI5N and VI5 or between VRSTN and VRST.

(In this case, hysteresis voltage VHYS in nominal measurement cannot be confirmed as the case may be)

By making starting up time of VDD power and VI5 shorter than time from level decision of VDD and VI5 to start load of trimming data [45ms to 62.5ms], it is able to avoid the above loop operation.

Detecting voltage to shut down power after applying VDD power more than 2.60V, VI5 power more than 4.40V and after loading trimming data becomes to s VRST and VI5.

*2 In the drawing, it is explained with VI5N≤VI5, VRSTN≥VRST, it is VI5N≤VI5, VRSTN≥VRST due to individual difference as the case may be.

Reset delay time (tHDL) of external reset circuit is made up using divided signal from 32kHz oscillation circuit. Therefore, reset delay time is different between when start oscillation (VDD from 0V or when input VDD2) and when work oscillation. Reset delay time when start oscillation is the following value.

• When start oscillation (tSTA) + tHDL

Reset delay time when work oscillation (32kHz internal propagation condition) is the following value.

• thdl

1) Reset delay time when start oscillation (VDD from 0V or when input VDD2)

2) Reset delay time when oscillating (32kHz internal propagation condition)

[14] Internal Reset Function

14.1 Reset signal in EEPROM control circuit

Reset signal of EEPROM control circuit is formed with the following contents.

In case of one of the followings, give a reset to EEPROM control circuit .

- 1) When VDD power(3.3V system) level is not decided.
- 2) When level of VI5 is not decided.

3) When 32kHz signal from oscillation circuit is not propagated to inner circuit of IC.

4) When FRST input (forced reset input) is High.

Reset of EEPROM control circuit is cancelled for the following two cases.

1) If meet all of the following 4 conditions, cancel reset of EEPROM control circuit part.

- VDD power (3.3V system)level is decided.
- VI5 level is decided.
- 32kHz signal from oscillation circuit is propagated to inner circuit of IC.
- FRST input (forced reset input) is Low.
- 2) Reset cancellation by FRST input is in accordance with the following conditions.
 - 32kHz signal from oscillation circuit is propagated to inner circuit of IC.
 - When FRST input (forced reset input) is changed from High to Low. (VDD=2.7V to 3.6V)
- 1) Reset cancellation timing and related signal when FRST input is Low and 32kHz signal is propagated to inner circuit of IC, and both VDD and VI5 are detected level decision are shown below.

 Reset cancellation timing and related signal when 32kHz signal is propagated to internal circuit of IC and when FRST input (forced reset input) is changed from High to Low (VDD=2.7V to 3.6V) are shown below.

14.2 Reset signal of timer circuit

Reset signal of timer circuit except EEPROM control circuit is formed with the following content. Reset signal of timer circuit is formed by detecting 32kHz clock from 32kHz oscillation circuit.

If impossible to detect 32kHz clock, gives reset. Addresses 0h to 3h are cleared by reset signal. If 32kHz clock is detected, cancel reset.

Reset signal is formed with the following timing chart for each case when input VDD and VDD2 from VDD2=0V, VDD=0V, when increase and drop voltage of power.

1) When input VDD, VDD2 from VDD2=0V, VDD=0V.

2) When voltage of VDD2 power increases (VDD=0V)

3) When falls voltage of VDD2 power (VDD=0V)

[15] Voltage Regulator control function

32kHz oscillation circuit (OSC) and 32kHz clock detecting circuit (STPF Detect) is driven by regulation voltage (Vreg) power (Vcore) formed in internal IC. This voltage regulator for Vcore voltage formation (Vreg) is changed over to 3 mode such as boost mode, normal mode and backup mode when input (when start oscillation) VDD or VDD2 power and by input voltage (VI5det) of VI5. Voltage regulator for Vcore voltage formation (Vreg) is worked by higher power either VDD or VDD2.

With boost mode, output high voltage to get quick oscillation start up time (t_{STA}).

Output low voltage by working sampling of Duty1/8 for saving power consumption.

Boost mode : 1.56V output, always operation

Normal mode : 1.02V output, always operation

Backup mode : 1.02V output, sampling operation

When input VDD or VDD2 power (when start oscillation), output 1.8V. (VDD2= over 1.8V)

After [Oscillation start time (t_{STA})+1 second] from VDD or VDD2 power input, output voltage is changed over to normal mode with 1.02V. After that, in case VI5 input voltage is less than VI5det, move to backup mode after 1 second and output voltage is changed over to 1.02V.

With backup mode, becomes to Duty1/8 sampling work.

When backup mode, VI5 input voltage becomes to over VI5det, change to normal mode.

In normal mode, if input voltage of VI5 becomes to less than VI5det, change over to backup mode.

* With backup mode, it works with ultra low power consumption. Be sure to refrain from sudden change of VDD and VDD2 power.

Notes) Voltage value is guiding value only (Typ. value).

[16] Serial data transfer format

This transfers 4-line type (or 3-line type) serial data. Serial data is transferred using MSB First in the following order: mode, address, data.

Set the mode using the upper 4 bits (mode field), and the data length for each field (address data) that follows will be determined.

16.1 Mode field

Setting the mode using the upper 4 bits.

Mode field		m3	m2	m1	m0
		Read/Write Reserved BA			KReg.
Data bit	0	0:Write	0*	00: Reserve 01: Timer mo	d ode
	1	1:Read	0*	10: Reserve 11: Nonvolat	d ile Memory

*m2 bit is able to Read/Write even if write "1", but please use with "0".

*m0 bit is able to Read/Write even if write "0", but please use with "1".

16.2 Address field/Data field

Timer mode (m1 bit =0,m0 bit=1)

Mode field	m3	m2	m1	m0				
Address field	a3	a2	a1	a0				
Data field	d7	d6	d5	d4	d3	d2	d1	d0

Nonvolatile Memory (m1 bit=1,m0 bit=1)

Mode field	m3	m2	m1	m0				
Address field	seg3	seg2	seg1	seg0				
	a7	a6	a5	a4	a3	a2	a1	a0
Data field	dF	dE	dD	dC	dB	dA	d9	d8
	d7	d6	d5	d4	d3	d2	d1	d0

*Segment bit(seg3 to 0) is able to Read/Write even if write "1", but be sure to use with "0" because of for expanded memory

16.3 Transfer mode

16.3.1 Cycle mode (Timer mode)

This module only provides Timer mode as a Cycle mode. Since it allows data reading and writing to be continued, this mode is useful for time data reading and flag overwriting (read and write).

* During data transfer, Cannot switch to Nonvolatile Memory mode

16.3.2 Nonvolatile Memory mode

Data can be transferred after the address is set.

[17] Access to Nonvolatile Memory (EEPROM)

It is possible to access to Nonvolatile Memory(EEPROM) if meet the following conditions.

- 1) VDD=2.7V to 3.6V
- 2) VI5=VI5det over
- 3) When oscillation circuit is working and 32kHz clock is propagated to internal circuit.
- 4) When RSToutput is Hi-z(Reset cancellation).

 $[\alpha + tHDL]$ later after deciding both VDD and VI5.

When start oscillation : α =tstA(when start ascillation), when work oscillation : α =0.

There are timing to load trimming data to adjust reference voltage to prescribed voltage range with 3 voltage detecting function of VDD, VI5 and VEX. It is impossible to access to Nonvolatie Memory with timing of load trimming data, therefore please surely access after cancellation of external Reset (RST output is Hi-z) by RST output.

Timing to load trimming data from Nonvolatile Memory are the following 2 cases when oscillation circuit works and 32kHzclock is propagated to internal circuit.

1) When both voltage VDD and VI5 are decided.

2) When FRST input (forced reset inout) is changed over from High to Low.

Time of loading is 20ms..

Timing to load trimming data and timing chart of RST output relation are shown below.

1) When both voltage level VDD and VI5 are decided.

2) When both voltage VDD and VI5 are decided.

* Load explanation of trimming data.

Trimming data works for adjusting reference voltage with 3 voltage detecting function of VDD,VI5 and VEX to prescribed voltage range. Address housing trimming data write setting data with FEh and FFh when deliver factory. Prohibited to write in this address.

[18] Register Functions Description

18.1 Registers

18.1.1 Nonvolatile Memory table (when using Nonvolatile Memory mode)

Segmemt	Address								Da	ata	-	-		-				Comments
		dF	dE	dD	dC	dB	dA	d9	d8	d7	d6	d5	d4	d3	d2	d1	d0	
0	00																	
	7F		User Memory													4 kbit(254×16 bit)		
	80		User Memory 4															
	FD																	
	FE							Rese	erved	d Me	mory	,						Factory default setting*
	FF							Rese	erveo	d Me	mory	/						Don't write to this area.

* Do not write over memory reserved for the factory default setting.

18.1.2 Timer register

Addr	Function	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	R/W	Comments
0	SEC	0	S40	S20	S10	S8	S4	S2	S1	R/W	BCD write
1	MIN	0	M40	M20	M10	M8	M4	M2	M1	R/W	BCD write
2	LTMR0	LT7	LT6	LT5	LT4	LT3	LT2	LT1	LT0	R/W	BIN write
3	LTMR1	LT15	LT14	LT13	LT12	LT11	LT10	LT9	LT8	R/W	BIN write
4	LT Reg	OVF	LSEL1	LSEL0	-	LOF3	LOF2	LOF1	LOF0	R/W	
5	TEST Reg	TEST ^{*2}	_*4	-	-	-	-	-	-	R/W	
6	Flag Reg ^{*3}	STPF	0	-	-	0	EXF	-	-	R/W	
7	Control	-	0	-	-	0	-	VLIE ^{*5}	-	R/W	

*1 Write "0" to the bit of "0" mark.

*2 The TEST is utilized in Epson test. You should clear the TEST to "0" by all means.

When TEST is set to "1", the IC does functions abnormality.

*3 As for STPF, only "0" clear is possible.

*4 As for the bit of "-", write is impossible, and readout value is indefinite.

*5 Clear the VLIE to "0" by all means. (There is not effect for the other function and a current even if write "1".)

*6 After initial power-on occurred, clear to "0" each bit of LOF0, LOF1, LOF2, LOF3, and VLIE.

*7 When circuit (STPF Detect) detecting a crystal oscillation of 32kHz detects the stop of the clock of 32kHz, it is reset to address 0h-03h, and it is cleared to "0".

18.2 VEX low voltage alarm (EXF)

You can observe VEX voltage using an independent voltage detection circuit. This circuit allows constant high precision voltage monitoring, but remember that this consumes power.

The circuit's main applications are main battery (main power supply) voltage observation. * When not in use, fix VEX to GND.

Reg.	bit data	Content	Comments
EXF		1: Detects voltages less than VEX.	Retained until a "0" is written.

18.3 Oscillation circuit voltage drop flag (STPF)

This function detects drops in voltage for the crystal oscillator. Previously, when a voltage drop occurred, STPF (Stop Flag) became "1". When STPF is "1", you must make initial settings because all registers are undefined except for nonvolatile memory.

Item	Symbol	condition	Min.	Тур.	Max.	Unit
Oscillation start detection time	tSTART	The period from a 32KHz clock input start			300	μS
Oscillation stop detection time	tSTOP	The period when the 32KHz clock stops			5000	μS

18.4 Control registers

18.4.1 TEST

This bit is reserved for testing work by Seiko Epson. Be sure to set it to 0. A TEST bit is 1, but the Read/Write access to a TEST register is possible. There is the case that BUSY signal doesn't leave but when "TEST" is set to "1". On this account, ignore the BUSY-signal at access to clear the TEST. Example Ignore BUSY & TEST readout \rightarrow TEST=1=yes \rightarrow Ignore BUSY & TEST clear to 0 \rightarrow

Ignore BUSY & TEST readout \rightarrow TEST=T=yes \rightarrow Ignore BUSY & TEST clear to 0 \rightarrow TEST=0 confirmation readout.

18.4.2 VLIE

This circuit block is not equipped with RTC-9825B SA, therefore there is not increase of the current regardless of the state of the VLIE bit.

18.5 Flag registers

This register is a flag register. As each event occurs, the flag register is set to 1, and can be cleared by setting it to "0". To retain the state of the corresponding register, set it to "1" (mask).

18.5.1 STPF

This flag is a bit that records when the oscillation stopped. For details, refer to the Oscillation circuit voltage drop flog (STPF)

18.5.2 EXF

Becomes "1" when a VEX voltage drop occurs.

[19] Timer logic

This is a long timer for counting-up a clock that was set using LSEL.

Since the data for initial operation is undetermined, you must make initial settings.

Caution: Long timer is counted up synchronized with counting up of seconds and minutes register.

For this reason, error with max. one cycle time of selected source clock is occurred.

For example, in case of selecting source clock with 1 hour, there are two possibilities like 1 count up soon and 1 count up max. 59 minutes and 59 seconds later. If correct timer setting is needed, please synchronize second and minute register.

19.1 Timer register

Addr	Function	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	R/W	Comments
0	SEC	0	S40	S20	S10	S8	S4	S2	S1	R/W	BCD write
1	MIN	0	M40	M20	M10	M8	M4	M2	M1	R/W	BCD write
2	LTMR0	LT7	LT6	LT5	LT4	LT3	LT2	LT1	LT0	R/W	BIN write
3	LTMR1	LT15	LT14	LT13	LT12	LT11	LT10	LT9	LT8	R/W	BIN write
4	LT Reg	OVF	LSEL1	LSEL0	-	LOF3	LOF2	LOF1	LOF0	R/W	
5	TEST Reg	TEST*2	-* ⁴	-	-	-	-	-	-	R/W	
6	Flag Reg* ³	STPF	0	-	-	0	EXF		-	R/W	
7	Control	-	0	-	-	0	-	VLIE* ⁵	-	R/W	

*1 Write "0" to the bit of "0" mark.

*2 The TEST is utilized in Epson test. You should clear the TEST to "0" by all means.

When TEST is set to "1", the IC does functions abnormality.

*3 As for STPF, only "0" clear is possible.

*4 As for the bit of "-", write is impossible, and readout value is indefinite.

*5 Clear the VLIE to "0" by all means. (There is not effect for the other function and a current even if write "1".)

*6 After initial power-on occurred, clear to "0" each bit of LOF0, LOF1, LOF2, LOF3, and VLIE.

*7 When circuit (STPF Detect) detecting a crystal oscillation of 32kHz detects the stop of the clock of

32kHz, it is reset to address 0h-03h, and it is cleared to "0".

19.2 Second and minute register (Address 0,1)

This is a 60-base BCD counter that counts from 0 to 59.

The counter is incremented when the digits increase from the lower register, and the digits in the upper register increase when the counter goes from 59 to 0. (When an incorrect value is set, such as 65, the increments are cleared to 0, and the digits in the upper register increase.)

When writing to second data, the counter for increments of less than a second is also cleared. Data is cleared immediately after DO data is "latched" to CLK.

	Reg.			Content	Comments
	LSEL1 LSEL0		Clock		
Source clock	0	0	1 s	1 second counter	
setting	0 1		1 min	1 minute counter	
ootting	1 0		1 h	1 hour counter	
	1 1			Reserved	
Long Timer	LT15~0		By setting up of LSEL1,0	1~0xFF_FF(hex)	Long timer
Over flow	OVF		Ľ		

[20] Operation condition of each function

	EEPROM access	Timer access	Timer function	External voltage detection circuit	External reset function	Oscillation
Vdd	2.7 V to 3.6 V	2.7 V to 3.6 V	* ² 2.7 V to 3.6 V	2.7 V to 3.6 V	2.7 V to 3.6 V	* ² 2.7 V to 3.6 V
VI5	VI5det over	×	×	×	4.5 V to 5.5 V	×
VDD2	×	×	* ³ * ⁴ 1.4 V to 5.5 V	×	×	* ³ 1.8V to 5.5 V
32kHz	* ¹ Internal propagation	* ¹ Internal propagation	* ¹ Internal propagation	* ¹ Internal propagation	* ¹ Internal propagation	
RST output	Reset cancellation (Hi-z)	×	×	×		х

×: Don't care

*1: Shows condition that works oscillation of 32kHz and propagates 32kHz clock into IC internal circuit.

*2: Or one of *3 keeps prescribed voltage.

*4: This is the voltage when VDD2 dropped after an oscillation start($1.8V \le VDD2$).

When a circuit does not use the backup mode of the low current,

RTC works by impressing a power supply on VDD(2.7V~3.6V).

[21] External diagram

[SA] External diagram

[22] Environmental and mechanical characteristics

(The company evaluation condition We evaluate it by the following examination item and examination condition.)

		Va	lue *1			
No.	Item	$\Delta f / f$	Electrical	Test Conditions		
		[1 × 10°]	characteristics			
1	YT' 1 /	*2				
1	High temperature storage	$*3 \pm 50$		$+125 {}^{\circ}\text{C} \times 1000 \text{h}$		
2	Low temperature storage	$*3 \pm 10$		-55 °C × 1 000 h		
3	High temperature bias	$*3 \pm 20$		+85 °C × 5.5 V × 1 000 h		
4	Low temperature bias	$*3 \pm 10$		-40 °C \times 5.5 V \times 1 000 h		
5	Temperature humidity bias	$*3 \pm 20$		+85 °C × 85 % RH × 5.5 V × 1 000 h		
6	Temperature cycle	*3 ± 10		-55 °C ⇔ +125 °C		
				30 min at each temp. 100 cycles		
7	Resistance to soldering heat	± 5		For convention reflow soldering furnace		
			*4	(2 times)		
8	Drop	± 5		Free drop from 750 mm height on a hard		
				wooden board for 3 times		
				(Board is thickness more than 30 mm)		
9	Vibration	± 5		10 Hz to 55 Hz amplitude 0.75 mm		
				55 Hz to 500 Hz acceleration 98 m/s^2		
				$10 \text{ Hz} \rightarrow 500 \text{ Hz} \rightarrow 10 \text{ Hz} \text{ 15min./cycle}$		
				6 h (2 hours, 3 directions)		
10	Flexibility of termination	No defe	ect for wire	Put weight of 2.5 N on top of the		
		term	nination	termination		
				Bending following angle :+90 $^{\circ}$ to -90 $^{\circ}$ to 0		
11	Solderability	Termination	n must be 95 %	Dip termination into solder bath at		
		covered wi	th fresh solder	$+235$ °C ± 5 °C for 5 s (Using Rosin Flux)		
12	Solvent resistance	The marking	shall be legible	Ref. JIS C 0052 or IEC 60068-2-45		

< Notes >

*1 Each test done independently.

*2 Measuring 2 h to 24 h later leaving in room temperature after each test.

*3 Pre conditionings

1. +125 °C × 24 h to +85 °C × 85 % × 48 h \rightarrow reflow 2 times

2. Initial value shall be after 24 h at room temperature.

*4. After testing, Satisfies [5] Oscillation characteristics, and [6] ~[10] Electrical characteristics. (Frequency precision and aging is excluded.)

♦ Air-reflow

Pre heating temperature: $+170 \, ^{\circ}\text{C}$ Pre heating time: $100 \, \text{s}$ Heating temperature : $+220 \, ^{\circ}\text{C}$ Heating time : $35 \, \text{s}$ Peak temperature must not exceed $+260 \, ^{\circ}\text{C}$

[23] SEIKO EPSON reflow profile

(1) Air Reflow

1 2 3	Pre Heating Heating Peak	: : :	+160 °C ~ +180 °C × 120 sec +220 °C × 60 sec +250 °C × 10 sec
Tem	perature [°C]		(Peak) Temp / time
250			
220			
180 160			

(2) Two (2) times reflow is allowed.

(3) Hand work soldering

+350 °C \times within 3 sec (1 point) by soldering iron.

(Pre Heat) Temp / time

(Heating) Temp / time

► time [s]

[24] External connection examples

Example 3. Circuitry when not using the backup circuit.

[25] Notes on handling

1) Notes on handling

This module has a crystal oscillator built-in, and please do not give a module unreasonable shock / vibration.

This module uses a C-MOS IC to realize low power consumption. Carefully note the following cautions when handling.

(1) Static electricity

While this module has built-in circuitry designed to protect it against electrostatic discharge, the chip could still be damaged by a large discharge of static electricity. Containers used for packing and transport should be constructed of conductive materials. In addition, only soldering irons, measurement circuits, and other such devices which do not leak high voltage should be used with this module, which should also be grounded when such devices are being used.

(2) Noise

If a signal with excessive external noise is applied to the power supply or input pins, the device may malfunction or "latch up." In order to ensure stable operation, connect a filter capacitor (preferably ceramic) of greater that 0.1µF as close as possible to the power supply pins (between VDD and GND, between VDD2 and GND). Also, avoid placing any device that generates high level of electronic noise near this module.

* Do not connect signal lines to the shaded area in the figure shown in Fig. 1 and, if possible, embed this area in a GND land. (3) Voltage levels of input pins

When the input pins are at the mid-level, this will cause increased current consumption and a reduced noise margin, and can impair the functioning of the device. Therefore, try as much as possible to apply the voltage level close to VDD or GND. (4) Handling of unused pins

Since the input impedance of the input pins is extremely high, operating the device with these pins in the open circuit state can lead to unstable voltage level and malfunctions due to noise. Therefore, pull-up or pull-down resistors should be provided for all unused input pins.

- 2) Notes on packaging
 - (1) Soldering heat resistance.

If the temperature within the package exceeds +260 °C, the characteristics of the crystal oscillator will be degraded and it may be damaged. The reflow conditions within our reflow profile is recommended. Therefore, always check the mounting temperature and time before mounting this device. Also, check again if the mounting conditions are later changed. * See Fig. 2 profile for our evaluation of Soldering heat resistance for reference.

(2) Mounting equipment

While this module can be used with general-purpose mounting equipment, the internal crystal oscillator may be damaged in some circumstances, depending on the equipment and conditions. Therefore, be sure to check this. In addition, if the mounting conditions are later changed, the same check should be performed again.

(3) Ultrasonic cleaning

Depending on the usage conditions, there is a possibility that the crystal oscillator will be damaged by resonance during ultrasonic cleaning. Since the conditions under which ultrasonic cleaning is carried out (the type of cleaner, power level, time, state of the inside of the cleaning vessel, etc.) vary widely, this device is not warranted against damage during ultrasonic cleaning.

(4) Mounting orientation

This device can be damaged if it is mounted in the wrong orientation. Always confirm the orientation of the device before mounting.

(5) Leakage between pins

Leakage between pins may occur if the power is turned on while the device has condensation or dirt on it. Make sure the device is dry and clean before supplying power to it.

[26] An example of the initialization

The following flow-chart is one instance. If you wish to take more efficient process, perform some processes at the same time or try to confirm and adjust some part where is no hindered from transposing of operation procedure.

Flow-chart

TAPING SPECIFICATION

I. Application

This standard will apply to SOP 14 pin package. Spec : SA package

II. Contents

Item No.	Item	Page
[1]	Taping specification	1 to 2
[2]	Inner carton	3
[3]	Shipping carton	
[4]	Marking	4
[5]	Quantity	
[6]	Storage environment	
[7]	Handling	

[1] Taping specificationSubject to EIA-481& IEC 60286

(1) Tape dimensions TE-1612L

Symbol	A	В	C	D	E	F
Value	φ 1.5	4.0	12.0	9.25	16.0	3.65

Unit : mm

(2) Reel dimensions

Material of the reel : Conductive polystyrene

(3) Packing \triangle

①Tape & reel

2 Start & end point

It	em	Empty space	Note		
Tape leader	Top tape	Min. 1 000 mm	Feeding in the Top tape, the tip is fixed with tape.		
(Start side)	Carrier tape	Min. 120 mm	Winding method is a diagram of the above		
Tape trailer	Top tape	Min. 0 mm	Tip is fixed to the reel.		
(Reel side)	Carrier tape	Min. 120 mm	•		

[2] Inner carton

- After the reel bag, put a desiccant, to seal in the heat.
- Add to the inner box
 - a) Packing to antistatic bag

b) Packing to inner carton

[3] Shipping carton

- Put in the inner carton to shipping carton.
- Gap is when you are, to put the cushion material.

[4] Marking

- (1) Reel marking
 - Reel marking shall consist of :
 - 1) Parts name
 - 2) Quantity
 - 3) Manufacturing date or symbol
 - 4) Manufacturer's date or symbol
 - 5) Others (if necessary)
- (2) Inner carton marking
 - Same as reel marking.
- (3) Shipping carton marking
 - Shipping carton marking shall consist of :
 - 1) Parts name
 - 2) Quantity
- [5] Quantity
 - 1 000 pcs./reel

[6] Storage environment

- (1) To storage the reel at 5 °C to 35 °C, 45 %RH to 85 %RH of humidity.
- (2) To open the packing just before using.
 - After unpacking, please keep in moisture-proof container desiccant.
- (3) Not to expose the sun.
- (4) Not to storage with some erosive chemicals.
- (5) Nothing is allowed to put on the reel or carton to prevent mechanical damage.

[7] Handling

• To handle with care to prevent the damage of tape, reel and products.

- PROCESS QUALITY CONTROL -

No. SOP14-00-Pb-ATE-1 SOP 14 pin

2007.4.19

6392 Kamiyoshida,Fujiyoshida-shi,Yamanashi,Japan

Manufacturing process obert	No	Section In charge	Standards & Specifications	Ingraction & Control Itom	Increation Instruments	Inspection methods	Depard
Manufacturing process chart	10.	Section in charge	Standards & Specifications	inspection & Control nem	inspection instruments	inspection methods	Recold
•	1	Inspection section	Purchasing specification	Appearance	Microscope	Sampling	Data Sneet
IC $(1)^{1}$ In-coming			incoming inspection standard	Dimension			
∑ 1-1 [™] Inspection	1-1	company	Incoming Inspection standard	Model, Quantity	Visual inspection	Sampling	Data sheet
T and former	1-2	Subcontractor	Incoming Inspection standard	Model, Quantity,	Visual inspection	Sampling	Data sheet
		company		Appearance			
V 1-2	2	Subcontractor	The assembly delivery	Deionized water (resistivity)	Resistivity meter	Sampling	Data sheet
Dissing		company	specification	Appearance	Microscope		
	3	Subcontractor	The assembly delivery	Appearance	Microscope	Sampling	Data sheet
(3) Die Attach		company	specification	Die-share strength	Thermometer, Timer		
				Dry-temperature, time			
$\sqrt{4}$ Wire Bonding	4	Subcontractor	The assembly delivery	Wire-pull strength	Pull-tester	Sampling	Data sheet
		company	specification	Bonding strength	Ball-share tester		
				Appearance	Thermometer, Gauge		
5 Crystal Welding				Temperature,Force	Dial-gauge		
				U.S.power	Microscope		
(6) Transfer Moulding	1-3	Subcontractor	Incoming inspection standerd	Model,Quantity	Visual inspection	Sampling	Data sheet
T Honing	5	Subcontractor	The assembly delivery	Welding_power	Power-measure	Sampling	Data sheet
Solder Plating	5	company	specification	Pressure Crystal position	Gauge	Sampring	
(Ph-free)		company	specification	Appearance	Microscope		
(10 Line)	6	Subcontractor	The assembly delivery	Mould Die-temperature	Surface-thermometer	Sampling	Data sheet
• Marking	0	company	specification	Curing-Temperature Time	Thermometer Timer	Sampring	Data Sheet
D Progra		company		Carring Temperature, Thire	X-ray radio graphic		
9 Pless					emipment		
				Appearance	Visual Inspection	100% Inspection	
(10) Finished Products	7	Subcontractor	Outer appearance inspection	Plating thickness	Fluorescent X-ray	Sampling	Data sheet
		company	standard	Appearance	Visual inspection	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
\downarrow	8	Subcontractor	Outer appearance inspection	Appearance	Image Processor	100% Inspection	Data sheet
(11) Outgoing Inspection	_	company	standard				
ľ	9	Subcontractor	Outer appearance inspection	Appearance	Image Processor	100% Inspection	Data sheet
(12) Taping		company	standard	Dimension			
Υ	10	Subcontractor	Manufacturing Instruction sheet	Electrical characteristics	Measuring equipment	100% Inspection	Data sheet
(13) Packing		company		Appearance		r	
γ	11	Subcontractor	Finished products	Electrical characteristics	Measuring equipment	Sampling	Data sheet
		company	Inspection standard	Outward from dimension	Microscope		
(14) Data Inspection			-	Appearance			
ľ	12	Subcontractor	The assembly delivery	Tape peeling force	Peeling force test machine	Sampling	Data sheet
\downarrow		company	specification	Appearance	Image Processor	100% Inspection	
(15)Packing	13	Subcontractor	Packing specification			·•	
\smile		company					
	14	Inspection section	Delivery specification	Electrical characteristics		Every Lot	
			outgoing Inspection standerd	Appearance			
	15	Production control	Manufacturing Instruction	Customers			Delivery slip
		section	sheet	Туре			
			Daily shipping list	Quantity			

RTC Japan: KATOH Electric Co., Ltd.

- PROCESS QUALITY CONTROL -

Japan: AOI ELECTRONICS CO/, LTD.

455-1 Takamatsu-shi,Kagawa,Japan

<u>No. 4543SA - 00 - PbF - AAE - 2</u>

Real Time Clock Module SOP 14pin

2003.12.17

Manufactur	ing process chart	No.	Section In charge	Standards & Specifications	Inspection & Control Item	Inspection Instruments	Inspection methods	Record
IC.	∧ · · · In coming	1	Inspection section	Purchasing specification Incoming Inspection standard	Appearance Dimension	Microscope	Sampling	Data Sheet
	Inspection	1-1	Subcontractor company	Incoming Inspection standard	Model, Quantity	Visual inspection	Sampling	Data sheet
Lead frame		1-2	Subcontractor company	Incoming Inspection standard	Model,Quantity, Appearance	Visual inspection	Sampling	Data sheet
		2	Subcontractor company	The assembly delivery specification	Appearance	Visual inspection	Sampling	Data sheet
	3 Die Attach		Subcontractor company	The assembly delivery specification	Appearance Die-share strength Dry-temperature time	Visual inspection Gauge Thermometer Timer	Sampling	Data sheet
Crvstal	4 Wire Bonding 5 Crystal Welding	4	Subcontractor company	The assembly delivery specification	Wire-pull strength Bonding strength Appearance Temperature,Force	Pull-tester Ball-share tester Microscope Thermometer,Gauge	Sampling	Data sheet
(6 Transfer Moulding	1-3	Subcontractor company	Incoming inspection standerd	Model, Quantity	Visual inspection	Sampling	Data sheet
	7) Solder Plating (Pb-free)	5	Subcontractor company	The assembly delivery specification	Welding-power Pressure,Crystal position Appearance	Power-measure Gauge Microscope	Sampling	Data sheet
	8 Marking 9 Press	6	Subcontractor company	The assembly delivery specification	Shape of bonded wire Mould Die-temperature Curing-Temperature, Time Appearance	X-ray radio graphic equipment Surface-thermometer Thermometer, Timer Visual Inspection	Sampling 100% Inspection	Data sheet
	Finished Products Inspection	7	Subcontractor company	Solder plating specification	Plating thickness Appearance	Fluorescent X-ray Visual inspection	Sampling 100% inspection	Data sheet
	11 Outgoing Inspection	8	Subcontractor company	The assembly delivery specification	Appearance	Visual inspection	Sampling	Data sheet
	(12) Taping	9	Subcontractor company	The assembly delivery specification	Appearance Dimension	Visual inspection Microscope	Sampling	Data sheet
	T 13) Packing	10	Subcontractor company	The assembly delivery specification	Electrical characteristics Appearance	Measuring equipment Visual inspection	100% Inspection	Data sheet
		11	Subcontractor company	Finished products Inspection standard	Electrical characteristics Appearance	Measuring equipment Visual inspection	Sampling	Data sheet
	14 Data Inspection	12	Subcontractor company	The assembly delivery specification	Tape peeling force	Peeling force test machine	Sampling	Data sheet
	(15) Packing	13	Subcontractor company	The assembly delivery specification			<u> </u>	
		14	Inspection section	Delivery specification outgoing Inspection standerd	Electrical characteristics Appearance		100% Inspection	
		15	Production control section	Manufacturing Instruction sheet Daily shipping list	Customers Type Quantity			Delivery slip

PROCESS QUALITY CONTROL

Crystal Unit Japan:INA plant 8548 Nakaminowa,Minowa-machi,Kamiina-gun,Nagano,Japan

A-88-2-HIE-1

Manufacturir	ng process chart	No.	Section In Charge	Standards	Inspection, Control Item	Inspection Methods	Instruments	Record
ODVETAL	PLOCK		Inspection Section	Purchasing Specifi-	Appearance	Sampling	Visual Inspection	In-coming Inspection
GRISIAL	- DLUGK	1		cation, Acceptance	Dimension	Sampling	Length Gauge	Data Sheet
				Inspection Standard				
				Purchasing Specifi-				In-coming Inspection
I V	s inspection	1'	Inspection Section	cation, Acceptance	Dimension	Sampling	Comparator	Data Sheet
	Wafer Cutting			Inspection Standard	Appearance	Sampling	Microscope	
Ý.	mater Outding	9	IN A Plant	Manufacturing Inst-	Cut Angle	Sampling	X-ray Radio Graphic	Process Data Sheet
3	Wafer Polishing	<u> </u>		ruction Sheet	Dimension	100% Inspection	Equipment,Comparator	
	•	ç	IN A Plant	Manufacturing Inst-	Appearance	100% Inspection	Visual Inspection	Process Data Sheet
<u>\</u> €	Wafer Inspection	<u> </u>		ruction Sheet	Wafer Thickness	Sampling	Comparator	
	<u> </u>	л	IN A Plant	Manufacturing Inst-				
9	Profile Etching	**	INATION	ruction Sheet	Appearance	100% Inspection	Visual Inspection	Process Data Sheet
6	Electrode Processing	E	INA Plant	Manufacturing Inst-	Etching Shape	Sampling	Microscope	Process Data Sheet
Plug	(Sputtering)	ي. 		ruction Sheet	Dimension	Sampling	Comparator	
7 占	SiO2 Coating			Manufacturing Inst-	Film Thickness	Sampling	Thickness Measuring	Process Data Sheet
l & ĭ		6	INA Plant	ruction Sheet	Film Strength	Sampling	Instrument, Tape	
					Appearance	Sampling	Microscope	
Inspection	Crystal Luning Fork			Manufacturing Inst-	Film Thickness	Sampling	Thickness Measuring	Process Data Sheet
	inspection	7	INA Plant	ruction Sheet	Film Strength	Sampling	Instrument, Tape	
Case					Appearance	Sampling	Microscope	
7 9	Mounting	8	IN A Plant	Manufacturing Inst-	Frequency	100% Inspection	Frequency Inspection	Process Data Sheet
	Frequency		INAFIAN	ruction Sheet	Appearance	100% Inspection	Machine, Microscope	
ΙΥ Ψ	Adjustment	0	INA Plant	Manufacturing Inst-	Mount Strength	Sampling	Tension Gauge	Process Data Sheet
In-Coming	rogustitotte			ruction Sheet	Appearance	Sampling	Microscope	
Inspection		10	IN A Plant	Manufacturing Inst-				
	Harmotia Sealing	, 0	INAFIGIC	ruction Sheet	Frequency	Sampling	Frequency Counter	Process Data Sheet
Annealing 🕧	(Encenerilation)	11	IN A Blant	Manufacturing Inst-				
	(Encapsulation)		INAFIAN	ruction Sheet	Temp · Time	Sampling	Thermometer, Timer	Process Data Sheet
63	Products Inspection	12	IN A Plant	Manufacturing Inst-	Dimension	Sampling	Comparator	Process Data Sheet
1 4		. ~		ruction Sheet	Appearance	Sampling	Microscope	
l a	Counting and Packing	13	INA Plant	Manufacturing Inst-	Electric Characteristics	100% Inspection	Characteristics In-	Process Data Sheet
I Ť	1	10		ruction Sheet			spection Machine	
√				Manufacturing Inst-				
To MC	Line	14	INA Plant	ruction Sheet	Quantity			Shipment List
			· · · · · · · · · · · · · · · · · · ·	Shipment List	Customer			
			[. 1

Crystal Unit Malaysia:EPMY

PROCESS QUALITY CONTROL

Lot 1, Jalan Persiaran Industri, Taman Perindustrian Sri Damansara, Sungai Buloh,52200 Kuala Lumpur

CODE:C-002SH Control No. A-88-2-HAEE-1

23/Jan/2001

	<u>oo z nale</u>	1	T					n
Manufacturi	ng process chart	No.	Section In Charge	Standards	Inspection, Control Item	Inspection Methods	Instruments	Record
ODVSTAL	PL OCK	1	Inspection Section	Purchasing Specifi-	Appearance	Sampling	Visual Inspection	In-coming Inspection
UNISTA	_ DLOUN			cation, Acceptance	Dimension	Sampling	Length Gauge	Data Sheet
ΙΥ	In-coming			Inspection Standard				
	> Inspection	1'	"	"	Dimension	Sampling	Comparator	"
					Appearance	11	Microscope	
2) Wafer Cutting	2	2'nd Plant of Domestic	Manufacturing Inst-	Cut Angle	Sampling	X-ray Radio Graphic	Process Data Sheet
3) Wafer Polishing		in Japan	ruction Sheet	Dimension	100% Inspection	Equipment,Comparator	and the second
	n	3	11	11	Appearance	100% Inspection	Visual Inspection	11
54	Wafer Inspection				Wafer Thickness	Sampling	Comparator	
5) Profile Etching	4	11	"	Appearance	100% Inspection	Visual Inspection	11
l I	Electrode Processing	5	11	"	Etching Shape	Sampling	Microscope	п
Dhur ()	⁾ (Sputtering)				Dimension	"	Comparator	
	Circl Cresting	6	"	//	Film Thickness	Sampling	Thickness Measuring	н
In-Coming K	⁹ Sio2 Coating				Film Strength	II II	Instrument, Tape	
	Crystal Tuning Fork				Appearance	11	Microscope	
Inspection	Inspection	7	"	"	Film Thickness	Sampling	Thickness Measuring	"
Can	inspection	· ·			Film Strength		Instrument, Tape	
vase g	Mounting				Appearance	"	Microscope	
	> Mountaing	8	Malaysia Plant	11	Frequency	100% Inspection	Frequency Inspection	11
{\$} ¢) Frequency				Appearance	"	Machine, Microscope	
In-Coming	Adjustment	9	11	11	Mount Strength	Sampling	Tension Gauge	11
Inspection		Ť			Appearance		Microscope	
Appealling 16	Hermetic Sealing	10	"	"	Frequency	Sampling	Frequency Counter	//
Annoannia (12	(Encapsulation)	11	"	"	Temp • Time	Sampling	Thermometer. Timer	11
বি	Oraduata Inspection	12	11	11	Dimension	Sampling	Comparator	11
	g mroduces inspection				Appearance		Microscope	
di di) Counting and Packing	13	11	"	Electric Characteristics	100% Inspection	Characteristics In-	11
I J							spection Machine	
- V	0 1 has	14	17	11	Quantity			Shipment List
10 M	JLINE	1 1 1		Shipment List	Customer			
				Comprison and a				
L		I		1	L	L	.1	L

2'nd Plant AEC or MIYAZAKI

Crystal Unit China: ETSZ

PROCESS QUALITY CONTROL

CODE:C-002SH

Control No. A-88-2-HSE-1

No.144, Hua Shan Road, Suzhou New District, Suzhou, Jiangsu China

19/Feb/2001

Manufacturing process ch	art No	Section In Charge	Standards	Inspection Control Item	Inspection Methods	Instruments	Becord
Manufacturing process chart		Inspection Section	Purchasing Specifi-		Sampling		In-coming Inspection
CRYSTAL BLOCK			cation Acceptance	Dimension	Sampling	Length Gauge	Data Sheet
~~			Increation Standard	Dimension	Gampling		Data Offeet
In-coming			Purchasing Specifie				In-coming Increation
Inspection	1 ,	Increation Section	Furchasing opecin	Dimension	Sampling	Comparator	Doto Shoot
Í Í	'	Inspection Section	Increation, Acceptance	Appearance	Sampling	Miaragana	Data Sheet
② Wafer Cutting		2'nd Plant of Domestic	Manufacturing Inst	Appearance Out Anala	Sampling	Wilcroscope	Durana Data Shaat
	2	in fanor	Manufacturing Inst-	Dimension		Array Radio Graphic	Process Data Sheet
y Wafer Polishing		2'nd Diapt of Domestic	ruction Sheet	Dimension	100% Inspection	Equipment, Comparator	
	3	Z no mane or Domestic	Manufacturing Inst-	Appearance	100% Inspection	Visual inspection	Process Data Sheet
water inspection	1	in Japan	ruction Sheet	Water Thickness	Sampling	Comparator	
5 Profile Etching		2 nd mant of Domestic	Manufacturing Inst-		1001/ 1		
	4	In Japan	ruction Sheet	Appearance	100% Inspection	Visual Inspection	Process Data Sheet
6 Electrode Proces	sing 5	2 nd Plant of Domestic	Manufacturing Inst-	Etching Shape	Sampling	Microscope	Process Data Sheet
Plug (Sputtering)		in Japan	ruction Sheet	Dimension	Sampling	Comparator	
	6	2'nd Plant of Domestic	Manufacturing Inst-	Film Thickness	Sampling	Thickness Measuring	Process Data Sheet
I Sioz Coating		in Japan	ruction Sheet	Film Strength	Sampling	Instrument, Tape	
In-Coming D Crystal Tuning E	vrk			Appearance	Sampling	Microscope	
Inspection Inspection	" 7	China Plant	Manufacturing Inst-	Film Thickness	Sampling	Thickness Measuring	Process Data Sheet
			ruction Sheet	Film Strength	Sampling	Instrument, Tape	
Case				Appearance	Sampling	Microscope	
Y (9) Mounting	8	China Plant	Manufacturing Inst-	Frequency	100% Inspection	Frequency Inspection	Process Data Sheet
			ruction Sheet	Appearance	100% Inspection	Machine, Microscope	
Adjustment	9	China Plant	Manufacturing Inst-	Mount Strength	Sampling	Tension Gauge	Process Data Sheet
In-Coming			ruction Sheet	Appearance		Microscope	
Inspection			Manufacturing Inst-				
	10	China Plant	ruction Sheet	Frequency	Sampling	Frequency Counter	Process Data Sheet
Annealling (D Hermetic Sealin	Š		Manufacturing Inst-				
(Encapsulation)	11	China Plant	ruction Sheet	Temp • Time	Sampling	Thermometer. Timer	Process Data Sheet
13 Products Insp	ction 12	China Plant	Manufacturing Inst-	Dimension	Sampling	Comparator	Process Data Sheet
			ruction Sheet	Appearance		Microscope	
(14) Counting and P:	ckine 13	China Plant	Manufacturing Inst-	Electric Characteristics	100% Inspection	Characteristics In-	Process Data Sheet
			ruction Sheet			spection Machine	
\downarrow			Manufacturing Inst-				
To MC Line	14	China Plant	ruction Sheet	Quantity			Shipment List
			Shipment List	Customer			