

Application Manual

Real Time Clock Module

RTC-4543SA/SB

Model	Product Number				
RTC-4543SA	Q41454351000200				
RTC-4543SB	Q41454361000200				

SEIKO EPSON CORPORATION

In pursuit of "Saving" Technology, Epson electronic device.

Our Lineup of semiconductors, Liquid crystal displays and quartz devices assists in creating the products of our customers' dreams.

Epson IS energy savings.

NOTICE

- The material is subject to change without notice.
- Any part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson.
- The information, applied circuit, program, using way etc., written in this material is just for reference. Seiko Epson does not assume any liability for the occurrence of infringing any patent or copyright of third party. This material does not authorize the licence for any patent or intellectual property rights.
- Any product described in this material may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export licence from the Ministry of International Trade and industry or other approval from another government agency.
- The products (except for some product for automotive applications) listed up on this material are designed to be used with ordinary electronic equipment (OA equipment, AV equipment, communications equipment, measuring instruments etc). Seiko Epson does not assume any liability for the case using the products with the appoication required high reliability or safety extremely (such as aerospace equipment etc). When intending to use any our product with automotive application and the other application than ordinary electronic equipments as above, please contact our sales representatives in advance.

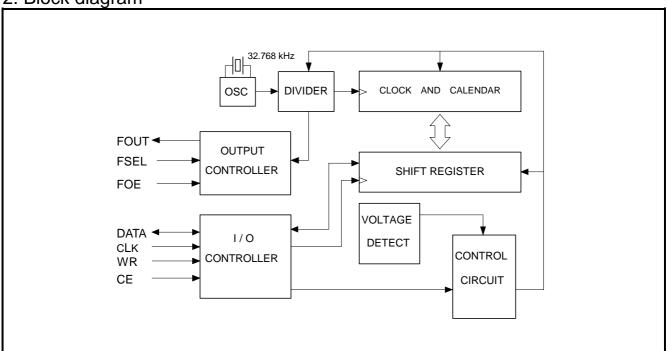
CONTENTS

1. OVERVIEW	1
2. BLOCK DIAGRAM	1
3. PIN CONNECTIONS	2
4. PIN FUNCTIONS	2
5. ELECTRICAL CHARACTERISTICS 5-1. ABSOLUTE MAXIMUM RATINGS 5-2. OPERATING CONDITION. 5-3. FREQUENCY CHARACTERISTICS. 5-4. DC CHARACTERISTICS. 5-5. AC CHARACTERISTICS. 5-6. TIMING CHARTS.	3333
6. TIMER DATA ORGANIZATION	6
7. DESCRIPTION OF OPERATION 7-1.DATA READS	7 7 8
8. EXAMPLES OF EXTERNAL CIRCUITS	9
9. EXTERNAL DIMENSIONS	10
10. LAYOUT OF PACKAGE MARKINGS	10
11. REFERENCE DATA	11
12. APPLICATION NOTES	12

32-kHz Output Serial RTC Module

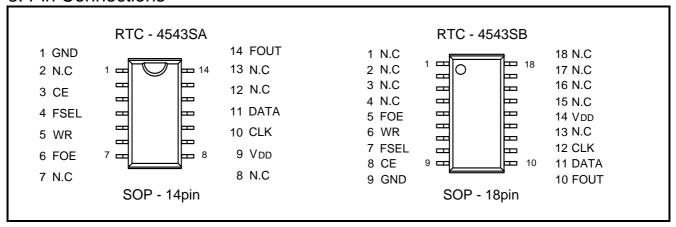
RTC - 4543 SA/SB

- Built-in crystal permits operation without requiring adjustment
- Built-in time counters (seconds, minutes, hours) and calendar counters (days, days of the week months, years)
- Operating voltage range: 2.5 V to 5.5 V
- Supply voltage detection voltage: 1.7 ±0.3 V
- Low current consumption: 1.0 μA/2.0 V (Max.)
- Automatic processing for leap years
- Output selectable between 32.768 kHz/1 Hz


1. Overview

This module is a real-time clock with a serial interface and a built-in crystal oscillator. This module is also equipped with clock and calendar circuits, an automatic leap year compensation function, and a supply voltage detection function.

In addition, this module has a 32.768 kHz/1 Hz selectable output function for hardware control that is independent of the RTC circuit.


This module is available in a compact SOP 14-pin package (RTC-4543SA) and a thin SOP 18-pin package (RTC-4543SB).

2. Block diagram

3. Pin Connections

4. Pin Functions

Signal	Pin No. SOP-14pin (SOP-18pin)	I/O	Function
GND	1 (9)		Connects to negative (-) side (ground) of the power supply.
CE	3 (8)	Input	Chip enable input pin. When high,the chip is enabled. When low,the DATA pin goes to high impedance and the CLK,DATA,and WR pins are not able to accept input.In addition, when low,the TM bit is cleared.
FSEL	4 (7)	Input	Serect the frequency that is output from the FOUT pin. High: 1 Hz Low: 32.768 kHz
WR	5 (6)	Input	DATA pin input/output switching pin. High: DATA input (when writing the RTC) Low: DATA output (when reading the RTC)
FOE	6 (5)	Input	When high, the frequency selected by the FSEL pin is output from the FOUT pin. When low, the FOUT pin goes to high impedance.
VDD	9 (14)		Connects to positive (+) side of the power supply.
CLK	10 (12)	Input	Serial clock input pin. Data is gotten at the rising edge during a write, and data is output at the rising edge during a read.
DATA	11 (11)	Bi-directional	Input/outout pin that is used for writing and reading data.
FOUT	14 (10)	Output	Outputs the frequency selected by the FSEL pin. 1 Hz output is synchronized with the internal one-second signal. This output is not affected by the CE pin.
N.C.	2,7,8,12,13 (1,2,3,4,13, 15,16,17,18)		Although these pins are not connected internally, they should always be left open in order to obtain the most stable oscillation possible.

^{*} Always connect a passthrough capacitor of at least 0.1 μF as close as possible between VDD and GND.

5. Electrical Characteristics

5-1. Absolute Maximum Ratings

Item	Symbol	Conditions	Min.	Max.	Unit		
Supply voltage	VDD		-0.3	7.0	V		
Input voltage	Vı	Ta=+25 °C	GND-0.3	VDD+0.3	V		
Output voltage	Vo		GND-0.3	VDD+0.3	V		
Storage temperature	Tstg	-	-55	+125	°C		
Soldering conditions		Max. 2 times under 10 seconds below a temperature of +260 °C or for 3 minutes below a temperature of +230 °C					

5-2. Operating Condition

Item	Symbol	Conditions	Min.	Max.	Unit
Operating supply voltage	VDD	-	2.5	5.5	V
Data holding voltage	VCLK	-	1.4	5.5	V
Operating temperature	Topr	No condensation	-40	+85	°C

5-3. Frequency Characteristics

Item	Symbol	Conditions	Max.	Unit
Frequency tolerance	Δf/fO	Ta=+25 °C , VDD=5.0 V	5 ± 23 *	×10 ⁻⁶
Frequency temperature characteristics	Тор	-10to+70 °C +25 °C ref	+ 10 / - 120	×10 ⁻⁶
Frequency voltage characteristics	f/V	Ta=+25 °C , V _{DD} =2.0 to 5.5 V	± 2	×10 ⁻⁶ /V
Oscillation start time	tSTA	Ta=+25 °C , VDD=2.5 V	3	S
Aging	fa	Ta=+25 °C , VDD=5 V , first year	± 5	×10 ⁻⁶

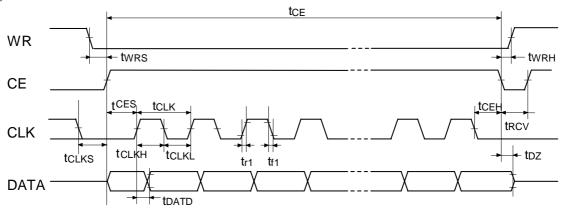
^{*} Monthly deviation: Approx. 1 min.

5-4. DC Characteristics

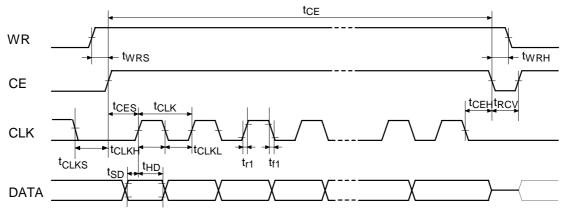
Unless specified otherwise: V_{DD} = 5 V \pm 10 %, Ta = - 40 to +85 °C

Item	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
Current consumption(1)	IDD1	VDD=5.0 V	CE=L , FOE=L		1.5	3.0	μΑ
Current consumption(2)	IDD2	VDD=3.0 V	FSEL=H		1.0	2.0	μΑ
Current consumption(3)	IDD3	VDD=2.0 V			0.5	1.0	μΑ
Current consumption(4)	IDD4	VDD=5.0 V	CE=L , FOE=H		4.0	10.0	μΑ
Current consumption(5)	IDD5	VDD=3.0 V	FSEL=L		2.5	6.5	μΑ
Current consumption(6)	IDD6	V _{DD} =2.0 V	No load on the FOUT pin		1.5	4.0	μΑ
Input voltage	ViH	WR,D	ATA,CE,CLK,	0.8 VDD			V
	VIL		FSEL pins			0.2 Vdd	V
Input off/leak current	loff	WR,CE,CL VIN =			0.5	μΑ	
	VOH(1)	VDD=5.0 V	Iон=-1.0 mA	4.5			V
Output voltage	VOH(2)	VDD=3.0 V	DATA , FOUT pins	2.0			V
	VOL(1)	VDD=5.0 V	IOL= 1.0 mA			0.5	V
	VOL(2)	VDD=3.0 V	DATA , FOUT pins			0.8	V
Output load condition (fanout)	N/CL	FOUT pin		2 LS	TTL / 30 p	oF Max.	
Output leak current	lozh	VOUT=5.5 V DATA , FOUT pins		-1.0		1.0	μΑ
	lozL	VOUT=0 V DATA , FOUT pins		-1.0		1.0	μΑ
Supply voltage detection voltage	VDT	-		1.4	1.7	2.0	V

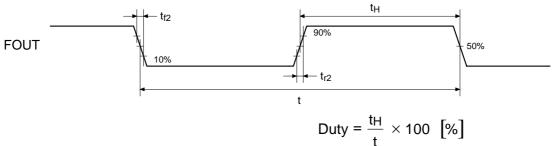
5-5. AC Characteristics

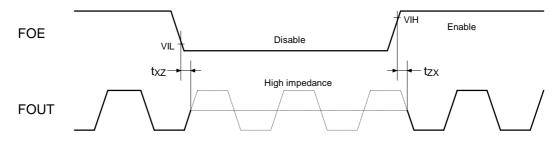

Unless specified otherwise: Ta = - 40 to +85 $^{\circ}$ C, CL = 50 pF

Item	Symbol		/ ± 10 %	V _{DD} =3 V ± 10 %		Unit
		Min.	Max.	Min.	Max.	
CLK clock cycle	tCLK	0.75	7800	1.5	7800	μs
CLK low pulse width	tCLKL	0.375	3900	0.75	3900	μs
CLK high pulse width	tCLKH	0.375	3900	0.75	3900	μs
CLK setup time	tclks	25		50		ns
CE setup time	tCES	0.375	3900	0.75	3900	μs
CE hold time	tCEH	0.375		0.75		μs
CE enable time	tCE		0.9		0.9	S
Write data setup time	tsd	0.1		0.2		μs
Write data hold time	tHD	0.1		0.1		μs
WR setup time	twrs	100		100		ns
WR hold time	twrh	100		100		ns
DATA output delay time	tDATD		0.2		0.4	μs
DATA output floating time	tDZ		0.1		0.2	μs
Clock input rise time	tr1		50		100	ns
Clock input fall time	tf1		50		100	ns
FOUT rise time (CL=30 pF)	tr2		100		200	ns
FOUT fall time (CL=30 pF)	tf2		100		200	ns
Disable time (CL=30 pF)	txz		100		200	ns
Enable time (CL=30 pF)	tzx		100		200	ns
FOUT duty ratio (CL=30 pF)	Duty	40	60	40	60	%
Wait time	tRCV	0.95		1.9		μs



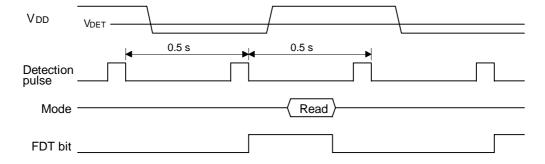
5-6. Timing Charts


(1) Data read


(2) Data write

(3) FOUT output

(4) Disable/enable

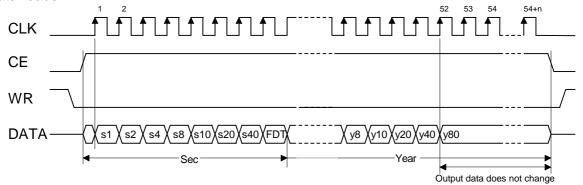

6. Timer Data Organization

- The counter data is BCD code.
- The timer automatically adjusts for different month lengths and for leap year.
- The time is indicated in 24-hour format.
- Writes and reads are both performed on an LSB-first basis.

	MSB							LSB
Second (0 to 59)	FDT	s40	s20	s10	s8	s4	s2	s1
•		r	r			r	r	
Minutes (0 to 59)	*	mi40	mi20	mi10	mi8	mi4	mi2	mi1
Hour (0 to 23)	*	*	h20	h10	h8	h4	h2	h1
				,				
Day of the week (1 to 7)					*	w4	w2	w1
				·				
Day (1 to 31)	*	*	d20	d10	d8	d4	d2	d1
Month (1 to 12)	TM	*	*	mo10	mo8	mo4	mo2	mo1
Year (0 to 99)	y80	y40	y20	y10	y8	y4	y2	y1

^{*} bits: Any data may be written to these bits.

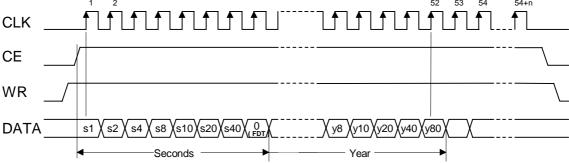
- FDT bit: Supply voltage detection bit
 - This bit is set to "1" when voltage of 1.7 ±0.3 V or less is detected between VDD and GND.
 - The FDT bit is cleared if all of the digits up to the year digits are read.
 - Although this bit can be both read and written, normally set this bit to "0".


The supply voltage detection circuit monitors the supply voltage once every 0.5 seconds; if the supply voltage is lower than the detection voltage value, the FDT bit is set to "1".

• TM bit: This is a test bit for SEIKO-EPSON's use. Always set this bit to "0".

7. Description of Operation

7-1.Data reads

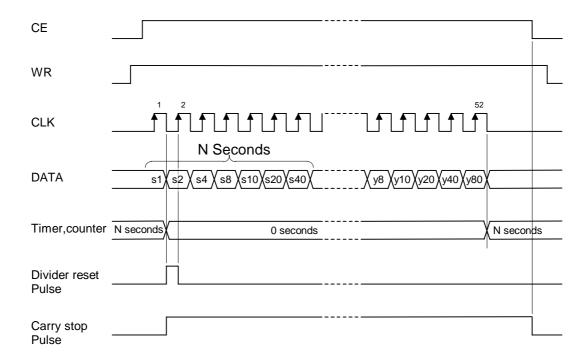

- 1) When the WR pin is low and the CE pin is high, the RTC enters data output mode.
- 2) At the first rising edge of the CLK signal, the clock and calendar data are loaded into the shift register and the LSB of the seconds digits is output from the DATA pin.
- 3) The remaining seconds, minutes, hour, day of the week, day, month, and year data is shifted out, in sequence and in synchronization with the rising edge of the CLK signal, so that the data is output from the DATA pin.
 - The output data is valid until the rising edge of the 52nd clock pulse; even if more than 52 clock pulses are input, the output data does not change.
- 4) If data is required in less than 52 clock pulses, that part of the data can be gotten by setting the CE pin low after the necessary number of clock pulses have been output.

Example: If only the data from "seconds" to "day of the week" is needed:

After 28 clock pulses, set the CE pin low in order to get the data from "seconds" to "day of the week."

- 5) When performing successive data read operations, a wait (tRCV) is necessary after the CE pin is set low.
- 6) Note that if an update operation (a one-second carry) occurs during a data read operation, the data that is read will have an error of -1 second.
- 7) Complete data read operations within tCE (Max.) = 0.9 seconds, as described earlier.

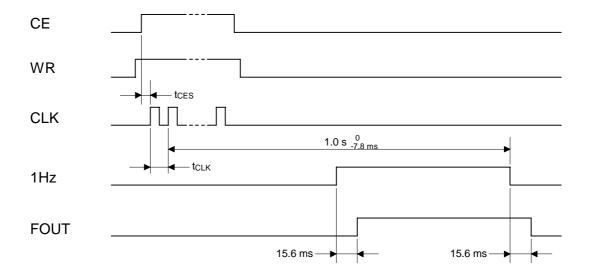
7-2. Data writes



- 1) When the WR pin is high and the CE pin is high, the RTC enters data input mode.
- 2) In this mode, data is input, in succession and in synchronization with the rising edge of the CLK signal, to the shift register from the DATA pin, starting from the LSB of the seconds digits.
- 3) The sub-seconds counter is reset between the falling edge of the first clock pulse and the rising edge of the second clock pulse. In addition, carries to the seconds counter are prohibited at the falling edge of the first clock pulse.
- 4) After the last data is input to the shift register at the rising edge of the 52nd clock pulse, the contents of the shift register are transferred to the timer counter.
- 5) Note that during a data write operation, 52 bits of data must be input.
 - Correct write-access isn't completed when CE terminal turned into low on a state of less than 52 bits.
 - If more than 52 bits of data are input, the 53rd and subsequent bits are ignored. (The first 52 bits of data are valid.)
- 6) Once the CE pin is set low, the prohibition on carries to the seconds counter is lifted. Complete data write operations within tce (Max.) = 0.9 seconds, as described earlier.
- 7) If a data read operation is to be performed immediately after a data write operation, a wait (tRCV) is necessary after the CE pin is set low.

^{*} Malfunction will result if illegal data is written. Therefore, be certain to write legal data.

7-3. Data writes (Divider Reset)

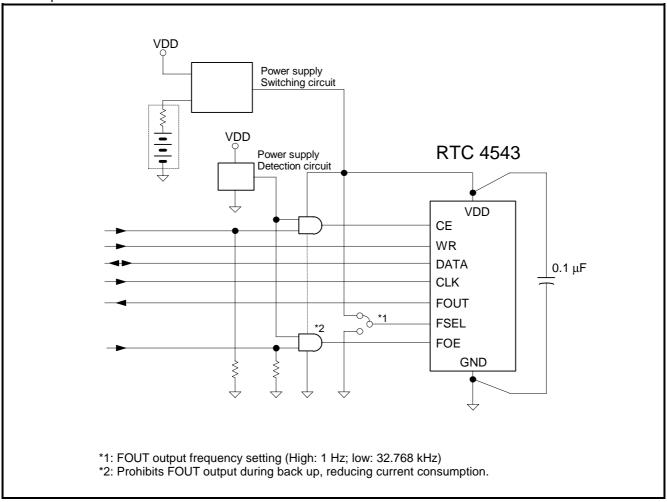


After the counter is reset, carries to the seconds digit are halted. After the data write operation, the prohibition on carries to the seconds counter is lifted by setting the CE pin low.

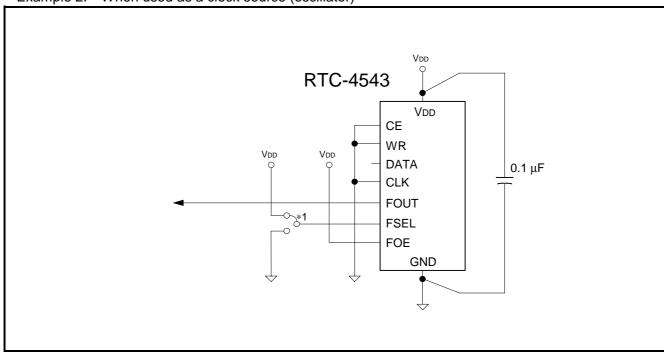
Complete data write operations within tCE (Max.) = 0.9 seconds, as described earlier.

7-4. FOUT output and 1 Hz carries

intervals.

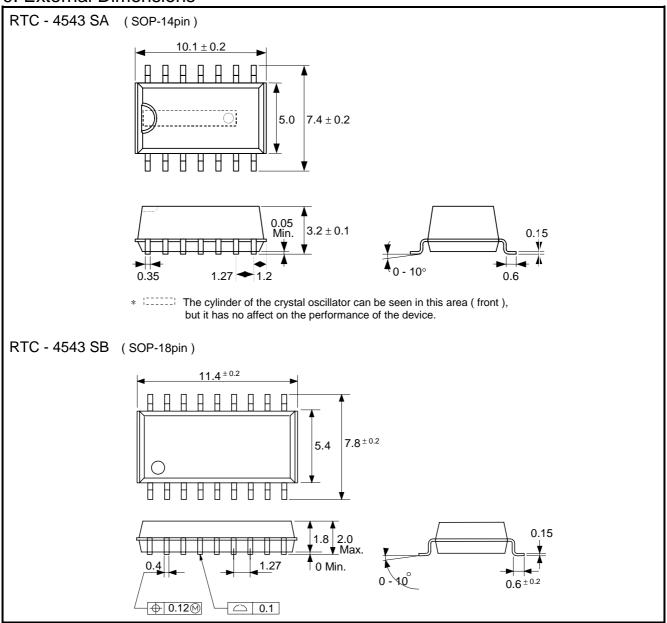

During a data write operation, because a reset is applied to the Devider counter (from the 128 Hz level to the 1 Hz level) after the CE pin goes high during the time between the falling edge of the first clock cycle and the rising edge of the second clock cycle, the length of the first 1 Hz cycle after the data write operation is 1.0 s +0 / -7.8ms +tCES+tCLK. Subsequent cycles are output at 1.0-second

The 1-Hz signal that is output on FOUT is the internal 1-Hz signal with a 15.6-ms shift applied.

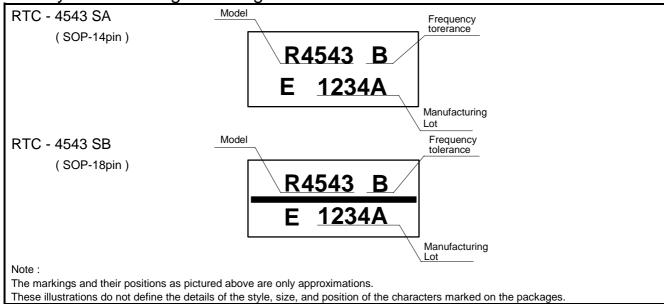


8. Examples of External Circuits

• Example 1. When used as an RTC + clock source

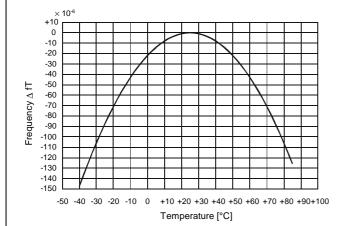


• Example 2. When used as a clock source (oscillator)



9. External Dimensions

10. Layout of Package Markings



11. Reference Data

(1) Example of Frequency-Temperature Characteristics

$$\theta$$
T = +25 °C Typ.
$$\alpha = -0.035 \times 10^{-6} / °C \stackrel{2}{\sim} Typ.$$

Determining the frequency stability (clock accuracy)

1.The frequency-temperature characteristics can be approximated by the following equation:

$$\Delta \mathsf{f} \mathsf{T} = \alpha (\theta \mathsf{T} \text{-} \theta \mathsf{x})^2$$

ΔfT : Frequency deviation at any given temperature

 $\alpha(\ /^{\circ}C^{2})$: Second-order temperature

((-0.035±0.005)×10⁻⁶/°C²)

 $\theta \tau(^{\circ}C)$: Highest temperature(+25 $^{\circ}C\pm5$ $^{\circ}C)$

 $\theta x(^{\circ}C)$: Any given temperature

2. In order to determine the clock accuracy, add in the frequency tolerance and the voltage characteristics.

$$\Delta f/f = \Delta f/f_0 + \Delta f_T + \Delta f v$$

 $\Delta f/f$: Clock accuracy at any given temperature

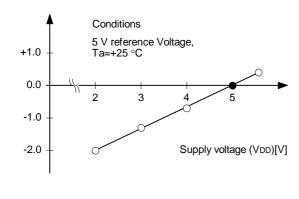
and voltage (frequency stability)

 $\Delta f/f_0$: Frequency accuracy

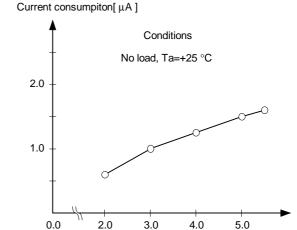
 Δf_T : Frequency deviation at any given temperature Δf_V : Frequency deviation at any given voltage

3. Determining the daily error

Daily error = $\Delta f/f \times 86400$ (seconds)


With error of 11.574 \times 10 $^{-6},$ the error of the clock is

about one second per day.


(2)Example of Frequency-Voltage

Characteristics

Frequency [$\times 10^{-6}$]

(3)Example of Current Consumption-Voltage Characteristics

Supply voltage (VDD) [V]

Note: This data shows values obtained from a sample lot.

12. Application notes

12-1. Notes on handling

This module uses a C-MOS IC to realize low power consumption. Carefully note the following cautions when handling.

(1) Static electricity

While this module has built-in circuitry designed to protect it against electrostatic discharge, the chip could still be damaged by a large discharge of static electricity. Containers used for packing and transport should be constructed of conductive materials. In addition, only soldering irons, measurement circuits, and other such devices which do not leak high voltage should be used with this module, which should also be grounded when such devices are being used.

(2) Noise

If a signal with excessive external noise is applied to the power supply or input pins, the device may malfunction or "latch up." In order to ensure stable operation, connect a filter capacitor (preferably ceramic) of greater that 0.1F as close as possible to the power supply pins (between VDD and GNDs). Also, avoid placing any device that generates high level of electronic noise near this module.

* Do not connect signal lines to the shaded area in the figure shown in Fig. 1 and, if possible, embed this area in a GND land.

(3) Voltage levels of input pins

When the input pins are at the mid-level, this will cause increased current consumption and a reduced noise margin, and can impair the functioning of the device. Therefore, try as much as possible to apply the voltage level close to VDD or GND.

(4) Handling of unused pins

Since the input impedance of the input pins is extremely high, operating the device with these pins in the open circuit state can lead to unstable voltage level and malfunctions due to noise. Therefore, pull-up or pull-down resistors should be provided for all unused input pins.

12-2. Notes on packaging

(1) Soldering temperature conditions

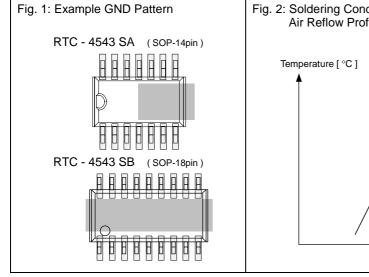
If the temperature within the package exceeds 260, the characteristics of the crystal oscillator will be degraded and it may be damaged. Therefore, always check the mounting temperature before mounting this device. Also, check again if the mounting conditions are later changed.

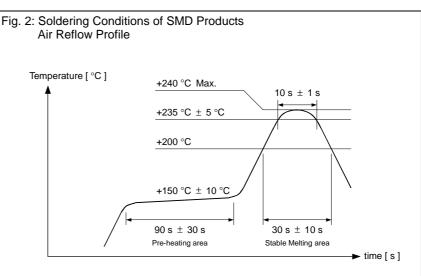
* See Fig. 2 for the soldering conditions of SMD products.

(2) Mounting equipment

While this module can be used with general-purpose mounting equipment, the internal crystal oscillator may be damaged in some circumstances, depending on the equipment and conditions. Therefore, be sure to check this. In addition, if the mounting conditions are later changed, the same check should be performed again.

(3) Ultrasonic cleaning


Depending on the usage conditions, there is a possibility that the crystal oscillator will be damaged by resonance during ultrasonic cleaning. Since the conditions under which ultrasonic cleaning is carried out (the type of cleaner, power level, time, state of the inside of the cleaning vessel, etc.) vary widely, this device is not warranted against damage during ultrasonic cleaning.


(4) Mounting orientation

This device can be damaged if it is mounted in the wrong orientation. Always confirm the orientation of the device before mounting.

(5) Leakage between pins

Leakage between pins may occur if the power is turned on while the device has condensation or dirt on it. Make sure the device is dry and clean before supplying power to it.

Application Manual

Distributor

AMERICA

EPSON ELECTRONICS AMERICA, INC.

HEADQUARTER 150 River Oaks Parkway, San Jose, CA 95134, U.S.A.

Phone: (1)800-228-3964 (Toll free): (1)408-922-0200 (Main) Fax: (1)408-922-0238

http://www.eea.epson.com

Atlanta Office 3010 Royal Blvd. South, Ste. 170, Alpharetta, GA 30005, U.S.A.

Phone: (1)877-332-0020 (Toll free): (1)770-777-2078 (Main) Fax: (1)770-777-2637

Boston Office 301Edgewater Place, Ste. 120, Wakefield, MA 01880, U.S.A.

Phone: (1)800-922-7667 (Toll free): (1)781-246-3600 (Main) Fax: (1)781-246-5443

Chicago Office 101 Virginia St., Ste. 290, Crystal Lake, IL 60014, U.S.A.

Phone: (1)800-853-3588 (Toll free): (1)815-455-7630 (Main) Fax: (1)815-455-7633

1960 E. Grand Ave., 2nd Floor, El Segundo, CA 90245, U.S.A.

Phone: (1)800-249-7730 (Toll free): (1)310-955-5300 (Main) Fax: (1)310-955-5400

EUROPE

El Segundo Office

EPSON EUROPE ELECTRONICS GmbH

HEADQUARTER Riesstrasse 15, 80992 Munich, Germany

Phone: (49)-(0)89-14005-0 Fax: (49)-(0)89-14005-110 http://www.epson-electronics.de

Düsseldorf Branch Office Altstadtstrasse 176, 51379 Leverkusen, Germany

Phone: (49)-(0)2171-5045-0 Fax: (49)-(0)2171-5045-10

UK & Ireland Branch Office Unit 2.4, Doncastle House, Doncastle Road, Bracknell, Berkshire RG12 8PE, England

Phone: (44)-(0)1344-381700 Fax: (44)-(0)1344-381701

French Branch Office LP 915 Les Conquérants, 1 Avenue de l' Atlantique, Z.A. de Courtaboeuf 2

91976 Les Ulis Cedex, France

Phone: (33)-(0)1-64862350 Fax: (33)-(0)1-64862355

ASIA

EPSON (CHINA) CO., LTD.

23F, Beijing Silver Tower 2# North RD DongSangHuan ChaoYang District, Beijing, China

Phone: (86) 10-6410-6655 Fax: (86) 10-6410-7319 http://www.epson.com.cn

Shinghai Branch High-Tech Building,900 Yishan Road Shanghai 200233, China

Phone: (86) 21-5423-5577 Fax: (86) 21-5423-4677

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road, Wanchai, Hong kong

Phone: (852) 2585-4600 Fax: (852) 2827-2152 http://www.epson.com.hk

EPSON ELECTRONIC TECHNOLOGY DEVELOPMENT (SHENZHEN)CO., LTD.

12/F, Dawning Mansion,#12 Keji South Road, Hi-Tech Park, Shenzhen, China

Phone: (86) 755-26993828 Fax: (86) 755-26993838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No.7, Song Ren Road, Taipei 110

Phone: (886) 2-8786-6688 Fax: (886)2-8786-6660 http://www.epson.com.tw

EPSON SINGAPORE PTE. LTD.

401, Commonwealth Drive, #07-01 Haw Par Technocentre Singapore 149598

Phone: (65) 6-586-3100 Fax: (65) 6-472-4291

http://www.epson.com.sg

SEIKO EPSON CORPORATION KOREA Office

50F, KLI 63 Building,60 Yoido-dong, Youngdeungpo-Ku, Seoul, 150-763, Korea Phone: (82) 2-784-6027 Fax: (82) 2-767-3677 http://www.epson-device.co.kr

Gumi Branch Office 2F, Grand Bldg.457-4, Songjeong-dong Gumi-City, Gyongsangbuk-Do,

730-090, Korea

Phone: (82) 54-454-6027 Fax: (82) 54-454-6093

SEIKO EPSON CORPORATION

ELECTRONIC DEVICE MARKETING DEPARTMENT

Electronic devices information on WWW server

http://www.epsondevice.com