

VOLTAGE-CONTROLLED SAW OSCILLATOR (VCSO)

Output: LV-PECL, Sine wave

LOW PHASE JITTER

EV1409EAN/SAN

: 22fs typ. (EV1409EAN) *3 • Low phase jitter

10fs typ. (EV1409SAN) *3

•Frequency range 1000 MHz to 3000 MHz(EV1409EAN)

1000 MHz to 2500 MHz(EV1409SAN)

 Supply voltage 3.3 V

•Absolute pull range : $\pm 50 \times 10^{-6}$ Min.

•External dimensions: $14.0 \times 9.0 \times 2.6(t)$ mm (Low Profile)

LV-PECL or Sine wave Output : OTN(40GbE,100GbE,400GbE), Application

High Speed ADCs and DACs, Test Instrument.

Product Number (please contact us) EV1409EAN: X1M000391xxxxxx EV1409SAN: X1M000401xxxxxx

Actual size

Specifications (characteristics)

Item	Symbol	EV1409EAN (LV-PECL)	EV1409SAN (Sine wave)	Conditions / I	Remarks
Output frequency range	fo	1000 MHz to 3000 MHz	1000 MHz to 2500 MHz	Please contact us about availa	ble frequencies.
Supply voltage	Vcc	3.3 V =	±0.165 V		
Storage temperature	T_stg	-45 °C	to +90 °C	Storage as single product.	
Operating temperature	T_use	-10 °C	to +85 °C		
Frequency tolerance *1	f_tol	P: -70×10^{-6} to $+120 \times 10^{-6}$			
Current consumption	Icc	90 m	A Max.		
Absolute pull range *2	APR	±50 × 10 ⁻⁶ Min.		Vc=1.65±1.65 V	
Pull range		-170 × 10 ⁻⁶ Max.(Vc=0V),+120 × 10 ⁻⁶ Min.(Vc=3.3V)		Vc=1.65±1.65 V	
Input resistance	Rin	100 kΩ Min.		DC level	
Frequency change polarity		Positive slope			
Symmetry	SYM	40 % to 60 %	_	Vcc-1.45 V, Vc = 1/2 Vcc	
	Vall	Vcc -1.3 V Min.	_	$1000MHz{<}f_0 \leq 2000~MHz$	
	Voн	Vcc -1.4 V Min.	_	$2000MHz{<}f_0 \leq 3000~MHz$	
Output voltage		Vcc -1.65 V Max.	<u> </u>	$1000 MHz {<} f_0 \leq 2000 \ MHz$	
	Vol	Vcc -1.6 V Max.	_	$2000 MHz {<} f_0 \leq 2500 \ MHz$	
		Vcc-1.5 V Max.	_	$2500 MHz {<} f_0 \leq 3000 \ MHz$	
Output level	_	_	0 dBm Min.		
Output load condition	L_ECL	50 Ω	_	Terminated to Vcc-2.0V	
Output load condition	Load_R	_	50 Ω	Terminated to GND	
Rise time / Fall time	tr / tf	0.5 ns Max.	-	$1000 \text{ MHz} \le f_0 \le 1700 \text{ MHz}$	Between 20 % and
		0.3 ns Max.	_	1700 MHz < fo ≤ 3000 MHz	80 % of (Voн-VoL)
Start-up time	t_str	10 ms Max.		Time at 90 %Vcc to be 0 s	
DI III		100 fs Max.	50fs Max.	1000 MHz ≤ f ₀ ≤ 1700 MHz	Offset frequency:
Phase Jitter	tPJ	22fs typ. *3 50 fs Max.	10fs typ. *3 30fs Max.	1700 MHz < fo ≤ 3000 MHz	12 kHz to 20 MHz

Frequency tolerance includes initial frequency tolerance, temperature variation, supply voltage variation, reflow drift, and aging (+25°C, 10 years).

Absolute pull range (APR) = Frequency control range - Frequency tolerance Output frequency is at 1986.819MHz(LV-PECL), 1968.75MHz(Sine wave)

Product Name

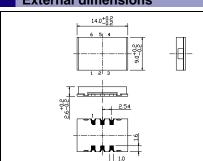
EV1409 EAN 1986.819000MHz C P E N B A

(Standard form) 3 456789

①Model ②Output(E: LV-PECL, S: Sine wave) ③Frequency ④Supply voltage (C: 3.3 V Typ.) ⑤Frequency tolerance

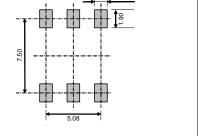
⑥Operating temperature ⑦OE function (N: Non)

Internal identification code ("A" is default)


⑤Fr€	⑤Frequency tolerance	
Р	-70 to +120× 10 ⁻⁶	

cy tolerance	⑥Operating temp.		
to +120× 10 ⁻⁶	Е	-10 to +85°C	

®Ab		
В	±50 × 10 ⁻⁶ Min.	


External dimensions

(Unit:mm)

Pin	Connection		
Pin	LV-PECL	Sine wave	
1	Vc GND GND		
2			
3			
4	OUT1 (Positive)	OUT	
5	OUT2 (Negative)	N.C.	
6	Vcc		

Footprint (Recommended) (Unit :mm)

PROMOTION OF ENVIRONMENTAL MANAGEMENT SYSTEM CONFORMING TO INTERNATIONAL STANDARDS

At Seiko Epson, all environmental initiatives operate under the Plan-Do-Check-Action (PDCA) cycle designed to achieve continuous improvements. The environmental management system (EMS) operates under the ISO 14001 environmental management standard.

All of our major manufacturing and non-manufacturing sites, in Japan and overseas, completed the acquisition of ISO 14001 certification.

ISO 14000 is an international standard for environmental management that was established by the International Standards Organization in 1996 against the background of growing concern regarding global warming, destruction of the ozone layer, and global deforestation.

WORKING FOR HIGH QUALITY

In order provide high quality and reliable products and services than meet customer needs,

Seiko Epson made early efforts towards obtaining ISO9000 series certification and has acquired ISO9001 for all business establishments in Japan and abroad. We have also acquired ISO/TS 16949 certification that is requested strongly by major automotive manufacturers as standard.

ISO/TS16949 is the international standard that added the sector-specific supplemental requirements for automotive industry based on ISO9001.

Explanation of the mark that are using it for the catalog

►Pb free.

- ► Complies with EU RoHS directive.
 - *About the products without the Pb-free mark.

 Contains Pb in products exempted by EU RoHS directive.

 (Contains Pb in sealing glass, high melting temperature type solder or other.)

▶ Designed for automotive applications such as Car Multimedia, Body Electronics, Remote Keyless Entry etc.

 \blacktriangleright Designed for automotive applications related to driving safety (Engine Control Unit, Air Bag, ESC etc).

Notice

- This material is subject to change without notice.
- Any part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson.
- The information about applied circuitry, software, usage, etc. written in this material is intended for reference only. Seiko Epson does
 not assume any liability for the occurrence of infringing on any patent or copyright of a third party. This material does not authorize the
 licensing for any patent or intellectual copyrights.
- When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- You are requested not to use the products (and any technical information furnished, if any) for the development and/or manufacture of
 weapon of mass destruction or for other military purposes. You are also requested that you would not make the products available to
 any third party who may use the products for such prohibited purposes.
- These products are intended for general use in electronic equipment. When using them in specific applications that require extremely high reliability, such as the applications stated below, you must obtain permission from Seiko Epson in advance.
 - / Space equipment (artificial satellites, rockets, etc.) / Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.) / Medical instruments to sustain life / Submarine transmitters / Power stations and related / Fire work equipment and security equipment / traffic control equipment / and others requiring equivalent reliability.
- · All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective.