

Application Manual

Programmable Voltage Controlled Oscillator

VG7050ECN

OUT-13-0626

SEIKO EPSON CORPORATION

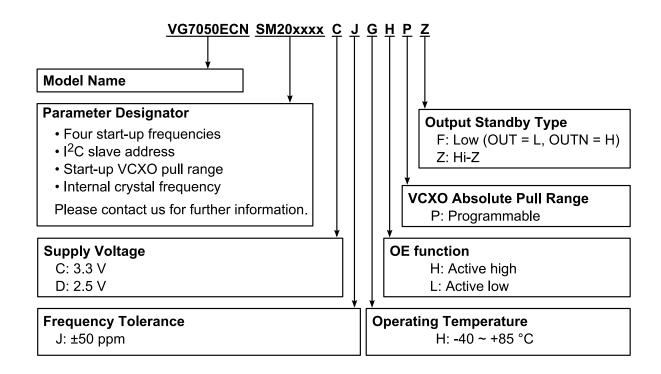
NOTICE

- This material is subject to change without notice.
- Any part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson.
- The information about applied circuitry, software, usage, etc. written in this material is intended for reference only. Seiko Epson does not assume any liability for the occurrence of infringing on any patent or copyright of a third party. This material does not authorize the licensing for any patent or intellectual copyrights.
- When exporting the products or technology described in this material, you should comply with the
 applicable export control laws and regulations and follow the procedures required by such laws and
 regulations.
- You are requested not to use the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes. You are also requested that you would not make the products available to any third party who may use the products for such prohibited purposes.
- These products are intended for general use in electronic equipment. When using them in specific
 applications that require extremely high reliability, such as the applications stated below, you must
 obtain permission from Seiko Epson in advance.
 - Space equipment (artificial satellites, rockets, etc.) / Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.) / Medical instruments to sustain life / Submarine transmitters / Power stations and related / Fire work equipment and security equipment / traffic control equipment / and others requiring equivalent reliability.
- All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective.

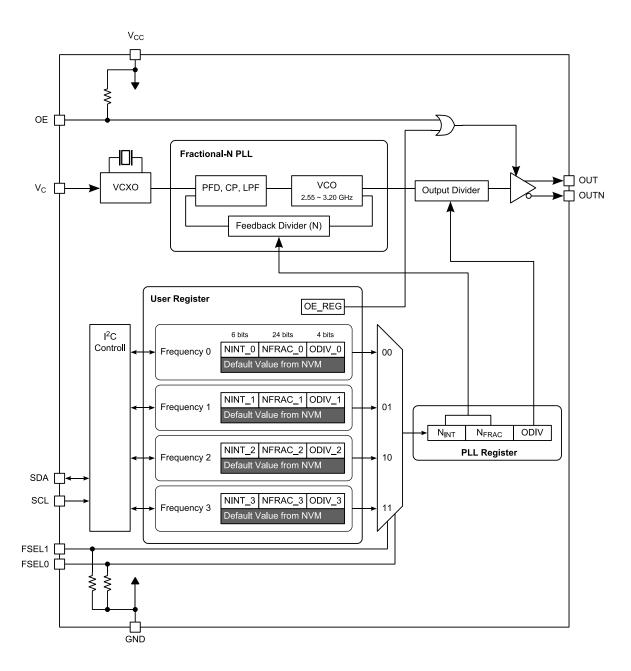
Table of Contents

1.	O١	verview	1
2.	Pa	art Number	2
3.	ВΙ	ock Diagram	3
4.	Ρi	n Assignments	4
	1.	Pin Assignments	
4.	2.	Pin Descriptions	
5.	FI	ectrical Characteristics	. 5
	1.	Absolute Maximum Ratings	
5.	2.	DC Characteristics	
5.	3.	AC Characteristics	7
5.	4.	VCXO Control Voltage Input (V _c)	. 10
5.	5.	LVPECL	
5.	6.	Startup	13
6.	Fι	ınctions	14
6.	1.	Overview	.14
6.	2.	Setting of the Kv	
6.	3.	Setting of the Output Frequency	
	6.3 6.3		
6.		I ² C Interface	
	6.4	-1. Connection of I ² C Bus	19
	6.4 6.4		
	6.4		
	6.4		
7.	Re	egisters	22
7.	1.	List of Registers	. 22
7.	2.	Product Code 0 Register	. 23
7.	3.	Product Code 1 Register	
7.		Revision Code Register	
	5.	ID Code 0 Register	
	6.	ID Code 1 Register	
	7. 8.	ODIV Register	
	o. 9.	NINT Register NFRAC Register	
		PLL Control Register	
		FSEL Status Register	
		KV Register	
8.		mensions	
_		evice Marking	
		•	
10.	Sc	oldering Pattern	30

1. Overview


Programmable Voltage Controlled Oscillator: VG7050ECN is a low jitter programmable VCXO at any frequency. VG7050ECN consists of VCXO, PLL and LVPECL output buffer. Its output frequency is programmable from 50 MHz to 800 MHz with almost 2 ppb resolution.

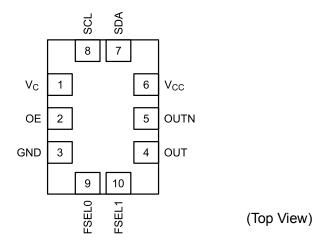
VCXO supplies stable reference clock to PLL with fundamental tone crystal. Kv of VCXO can be programmed via I²C interface.


PLL consists of a low jitter fractional-N PLL technology. The components for loop filter are embedded into IC, so no external component is needed.

- Programmable clock output frequency from 50 MHz to 800 MHz
- Frequency setting resolution is around 2 ppb
- Kv is programmable
- · Low jitter and high reliability clock source from the fundamental tone internal crystal
- Low jitter and low noise PLL
- Four power-up default frequency
- Factory preset device options
 - OE polarity
 - Output standby type: Hi-Z or OUT = "L", OUTN = "H"
 - I²C interface slave address
- Embedded resistors and capacitors for oscillator and loop filter for PLL
- I²C interface
- LVPECL output
- 10-pin ceramic 5 x 7 mm package
- 2.5 V or 3.3 V supply voltage modes
- -40 °C ~ +85 °C ambient operating temperature
- Pb-free / RoHS-compliant

2. Part Number

3. Block Diagram



^{*} If OE pin is configured as active low, OE pin is pulled down to GND with internal pull down resistor.

Figure 3.1. VG7050ECN Block Diagram

Pin Assignments 4.

4.1. Pin Assignments

4.2. Pin Descriptions

Table 4.1 Pin Descriptions

No.	Pin Name	Туре	1	Function			
1	V _C	Input	-	VCXO Control Voltage Input			
2	OE	Input	Pull-up/	Output Enable (Active High)			
				OE Input "H" or Open Outputs are enabled. "L" High-impedance state or OUT = "L", OUTN = "H"			
			Pull-down	Output Enable (Active Low)			
				OE Input "H" High-impedance state or OUT = "L", OUTN = "H" "L" or Open Outputs are enabled.			
3	GND	Power	-	Negative Power Supply			
4	OUT	Output	-	Differential clock output. LVPECL interface levels.			
5	OUTN	Output	-				
6	V _{CC}	Power	-	Positive Power Supply			
7	SDA ^{*1}	Input/Output	-	I ² C Data Input/Output Input: LVCMOS interface levels, Output: Open drain			
8	SCL*1	Input		I ² C Clock Input			
9	FSEL0	Input	Pull-down	Frequency select			
10	FSEL1	Input	Pull-down				
	Note: "Pull-up" or "Pull-down" refers to VG7050ECN internal input resistors.						

5. Electrical Characteristics

5.1. Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Тур.	Max.	Units
Supply voltage, V _{CC}	Vcc	GND = 0 V	-0.3	-	4.0	٧
Pull-up voltage	V_{PU}	SDA, SCL	-0.3	-	4.0	V
Input voltage 1	V _{in1}	GND = 0 V, Input pins except to SDA and SCL	GND - 0.3	-	V _{CC} + 0.3	٧
Input voltage 2	V _{in2}	GND = 0 V, SDA, SCL	GND - 0.3	-	4.0	٧
Storage temperature	Tstg	Store as bare product	-55	-	+125	°C
ESD sensitivity	ESD	НВМ	2000	-	-	V
		MM	200	1	-	

Note: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

These are stress ratings only. Functional operation of the device at these or any other conditions beyond those listed in the "DC characteristics" or "AC characteristics" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

5.2. DC Characteristics

Table 5.1. Power Supply, Operating Temperature

GND = 0 V, Ta = $-40 \sim +85 ^{\circ}$ C

Item	Symbol	Conditions	Min.	Тур.	Max.	Units
Positive supply voltage	Vcc	3.3 V option	2.970	3.3	3.630	V
		2.5 V option	2.375	2.5	2.625	
Positive supply current*1	I _{cc}	OE = Enable, Outputs terminated with	th 50 Ω to V_{C}	_C – 2.0 V		
Output enable mode		3.3 V option	-	1	90	mA
		2.5 V option	-	1	90	
Positive supply current *1	I_dis	OE = Disable, Output standby type:	Hi-Z			
Output disable mode		3.3 V option	-	1	40	mA
		2.5 V option	-	1	40	
		OE = Disable, Output standby type:	Fix (OUT = "L	_", OUTN = "I	H")	
		3.3 V option	-	-	70	mA
		2.5 V option	-	1	70	
Operating temperature	Та	40 - +85 °C				°C
Note 1: Guaranteed by des	sign, chara	cterization, and/or simulation only and	d not producti	on tested.		

Table 5.2. Logic I/O

 V_{CC} = 3.3 V \pm 10% or 2.5 V \pm 5%, GND = 0 V, Ta = -40 \sim +85 $^{\circ}C$

	* ()	0.0 V ± 10/0 01 2.0 V ± 0	,	0 V, IG		
Item	Symbol	Conditions	Min.	Тур.	Max.	Units
Pull-up voltage	V_{PU}	SDA, SCL	V _{CC} x 0.7	-	3.630	V
High level input voltage 1	V _{IH1}	OE, FSEL0, FSEL1	V _{CC} x 0.7	-	V _{CC} + 0.3	V
High level input voltage 2	V _{IH2}	SDA, SCL, Pull Up Voltage = V _{PU}	V _{CC} x 0.7	-	3.630	V
Low level input voltage	V _{IL}	SDA, SCL, OE, FSEL0, FSEL1	-0.3	-	V _{CC} x 0.3	V
High level input current 1	I _{IH1}	SDA, SCL, OE (Active High) , FSEL0, FSEL1	-	-	2	μA
High level input current 2	I _{IH2}	V _{CC} = 3.3 V ± 10%, OE (Active Low)	-	-	170	μA
		V _{CC} = 2.5 V ± 5%, OE (Active Low)	-	-	100	
Low level input current 1	I _{IL1}	SDA, SCL, OE (Active Low), FSEL0, FSEL1	-2	-	-	μA
Low level input current 2	I _{IL2}	V_{CC} = 3.3 V ± 10%, OE (Active High)	-70	-	-	μA
		V _{CC} = 2.5 V ± 5%, OE (Active High)	-35	-	-	
Low level output voltage	V_{OL}	SDA, at 3 mA sink current	0	-	0.4	V
Low level output current	I _{OL}	SDA, V _{OL} = 0.4 V	3	-	-	mA
Pull-up resistor	Rup	OE (Active High)	-	85	-	kΩ
	R _{DOWN}	OE (Active Low), FSEL0, FSEL1	-	35	-	
Input Capacitance ^{*1}	C _{IN}	OE, SDA, SCL, FSEL0, FSEL1 - 5 - p				pF
Note 1: Guaranteed by desi	on, charact	erization, and/or simulation only and	not producti	on tested.	•	

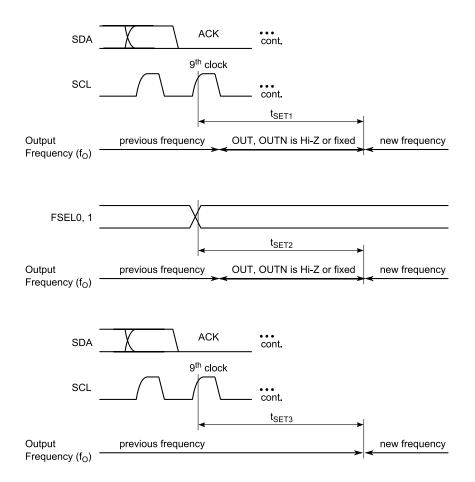
5.3. AC Characteristics

Table 5.3. Output Frequency Characteristics

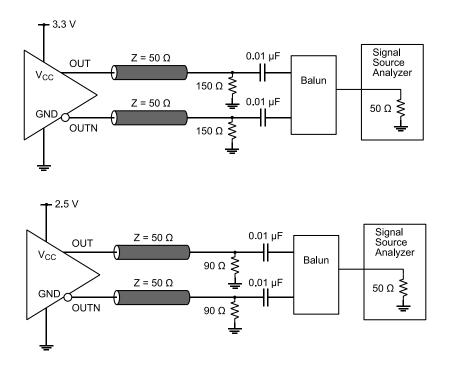
 V_{CC} = 3.3 V ± 10% or 2.5 V ± 5%, GND = 0 V, Ta = -40 ~ +85 °C

	A C.C.	_	J.J V ± 10/0	01 Z.3 V ± v	370, CIND	– 0 v, ia	- -0 '	00 0
Item	Symbol		Conditi	ions	Min.	Тур.	Max.	Units
Output frequency	f _O	Οl	JT, OUTN		50	-	800	MHz
Internal crystal frequency	f _{XTAL}	-			-	114.144	-	MHz
Frequency reprogramming resolution	M _{RES}		-		2.2	-	2.8	ppb
Frequency tolerance 1	f_tol	fre su	is parameter inc equency toleranc pply voltage vari ars aging ² at 25	e, temperature, iation and 10	-	-	±50 x 10 ⁻⁶	-
Delta frequency for continuous output*1	-		om Center Frequi	uency that is NEW_FREQ bit	-500	-	500	ppm
Setting time for large frequency change	t _{SET1}		om setting NEW tput new frequer		-	-	1.5	ms
Setting time after FSEL0 and FSEL1 values are changed	t _{SET2}		-		-	-	1.5	ms
Setting time for small frequency change *1	t _{SET3}	fre	±500 ppm from o equency that is d tting NEW_FRE	efined by	-	1	100	μs
SSB phase noise*1	F _{CN}	f_{O}	= 622.08 MHz, f	rom carrier				
			$V_{CC} = 3.3 V^{*3}$	100 Hz	-	-75.7	-	dBc/Hz
				1 kHz	-	-101.6	-	
				10 kHz	-	-118.8	-	
				100 kHz	-	-121.3	-	
				1 MHz	-	-129.3	-	
				10 MHz	-	-146.8	-	
			$V_{CC} = 2.5 V^4$	100 Hz	-	-72.7	-	
				1 kHz	-	-99.3	-	
				10 kHz	-	-118.2	-	
				100 kHz	-	-121.3	-	
				1 MHz	-	-129.2	-	
				10 MHz	-	-146.9	-	
RMS phase jitter 1, 14	t _{PJ}	fo	= 622.08 MHz, I	ntegration range	: 12 kHz – 20	MHz (OC-4	l8)	
			$V_{CC} = 3.3 \text{ V}^{*3}$		-	0.3	-	ps
			$V_{CC} = 2.5 V^4$		-	0.3	-	ps
		f_{O}	= 622.08 MHz, I	ntegration range	: 20 kHz – 50) MHz		
			$V_{CC} = 3.3 \text{ V}^3$		-	0.3	-	ps
			$V_{CC} = 2.5 V^4$		-	0.3	-	ps
		f_{O}	= 622.08 MHz, I	ntegration range	: 50 kHz – 80) MHz (OC-1	92)	
			$V_{CC} = 3.3 \text{ V}^{*3}$	<u> </u>	-	0.3	-	ps
			$V_{CC} = 2.5 V^{4}$		-	0.3	-	ps
			•					

Note 1: Guaranteed by design, characterization, and/or simulation only and not production tested.


Note 1. Guaranteed by design, Graacterization, and/or simulation only and not production tested.

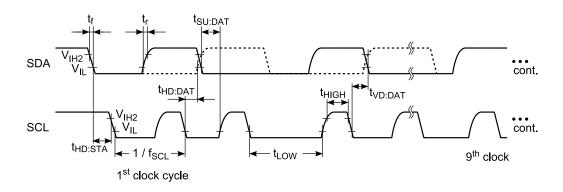
Note 2: The aging in the frequency tolerance is from environmental tests results to the expectation of the amount of the frequency variation. This doesn't guarantee the product life cycle.

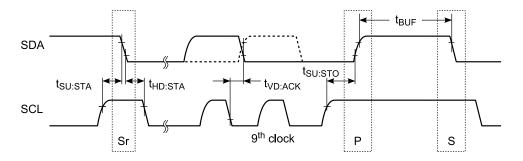

Note 3: f_{XTAL} = 114.144 MHz, Ta = +25 °C, V_{CC} = 3.3 V, V_C = 1.65 V, KV = 0x0.

Note 4: f_{XTAL} = 114.144 MHz, Ta = +25 °C, V_{CC} = 2.5 V, V_C = 1.25 V, KV = 0x0.

Note 5: The output clock may contain spurious that depends on the settings of fo, f_{XTAL}, PLL and output divider. The RMS jitter may be worse, if the spurious is in integration range of RMS jitter. For more information, please contact us.

Frequency Change Time


Phase Noise Test Circuit


Table 5.4. Serial Interface

 V_{CC} = 3.3 V ± 10% or 2.5 V ± 5%, GND = 0 V, Ta = -40 ~ +85 °C

V _{CC} 3.3		OO .	± 070, CI1D	0 v, 1a	10	••
Item	Symbol	Conditions	Min.	Тур.	Max.	Units
SCL clock frequency	f _{SCL}	-	-	-	400	kHz
Hold time (repeated) START condition, After this period, the first clock pulse is generated.	t _{HD;STA}	-	0.6	-	1	μs
Low period of the SCL clock	t _{LOW}	-	1.3	-	•	μs
High period of the SCL clock	t _{HIGH}	-	0.6	-	-	μs
Set up time for a repeated START condition	t _{SU;STA}	-	0.6	-	1	μs
Input data hold time	t _{HD;DAT}	-	0	-	•	μs
Output data set-up time	t _{SU;DAT}	-	100	-	1	ns
Rise time of both SDA and SCL signals 1	t _r	-	-	-	300	ns
Fall time of both SDA and SCL signals	t _f	-	-	-	300	ns
Set up time for STOP condition	t _{su;sto}	-	0.6	-	-	μs
Bus free time between a STOP and START condition	t _{BUF}	-	1.3	-	-	μs
Data valid time	t _{VD:DAT}	-	-	-	0.9	μs
Data valid acknowledge time	t _{VD;ACK}	-	-	-	0.9	μs
Note 1: Guaranteed by design, characterization	n and/or sin	nulation only	and not producti	on tested		•

Note 1: Guaranteed by design, characterization, and/or simulation only and not production tested.

Serial Interface

5.4. VCXO Control Voltage Input (V_C)

Table 5.5. VCXO Control Voltage Input (V_c) Characteristics (1)

 V_{CC} = 3.3 V ± 10% or 2.5 V ± 5%, GND = 0 V, Ta = -40 ~ +85 °C

	- 00	•				
Item	Symbol	Conditions	Min.	Тур.	Max.	Units
Control voltage tuning range	Vc	-	0	-	V_{CC}	V
V _C input resistance	R _{IN}	DC Level	5	-	-	МΩ
Nominal Control Voltage	VC_{NOM}	V _{CC} = 3.3 V ± 10%	-	1.65	-	V
		V _{CC} = 2.5 V ± 5%	-	1.25	-	
Frequency Change Polarity		-	P	ositive slop	ре	-

Table 5.6. VCXO Control Voltage Input (V_c) Characteristics (2)

 V_{CC} = 3.3 V ± 10% or 2.5 V ± 5%, GND = 0 V, Ta = -40 ~ +85 °C

Item	Symbol		Condi	tions	Min.	Typ.	Max	Units			
Control voltage linearity	f_lin	BSL	BSL V _{CC} = 3.3 V, V _C = 0.3 V ~ 3.0 V			-	±10	%			
			V_{CC} = 2.5 V, V_{C} = 0.25 V ~ 2.25 V		-	-	±10	1			
Modulation bandwidth	BW	±3 dB, r	eference input	: 1 kHz	10	-	-	kHz			
Absolute pull range *1	APR	$V_{CC} = 3$.	.3 V,	KV Register							
			$V_C = 0.3 V \sim 3.0 V$, $f_{XTAL} = 114.144 MHz$	0x0	180	-	-	ppm			
		IXIAL — I	17.177 IVII IZ	0x1	164	-	-				
				0x2	148	-	-				
				0x3	132	1	-				
				0x4	116	1	-				
				0x5	99	1	-				
				0x6	83	1	-				
				0x7	67	1	-				
				0x8	51	1	-				
			0x9	35	1	-					
			0xA	19	1	-					
							0xB	3	1	-	
		V _{CC} = 2.	5 V,	KV Register							
		$V_{\rm C} = 0.2$	$V_C = 0.25 \text{ V} \sim 2.25 \text{ V},$ $f_{XTAL} = 114.144 \text{ MHz}$	0x0	183	-	-	ppm			
		'XIAL I	11.111111111111111111111111111111111111	0x1	166	-	-				
				0x2	150	-	-				
				0x3	134	-	-				
				0x4	118	-	-				
				0x5	102	-	-				
				0x6	86	-	-				
				0x7	69	1	-				
				0x8	54	-	-]			
					0x9	38	-	-			
			0xA	22	-	-					
				0xB	6	-	-				
Note: Guaranteed by design	gn, charact	erization,	and/or simula	tion only and not prod	uction test	ed.					

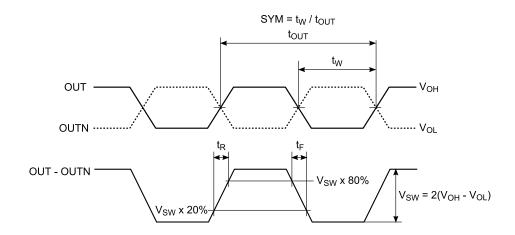
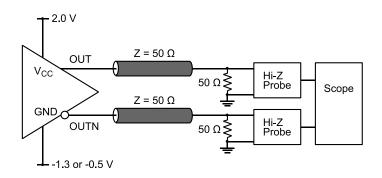
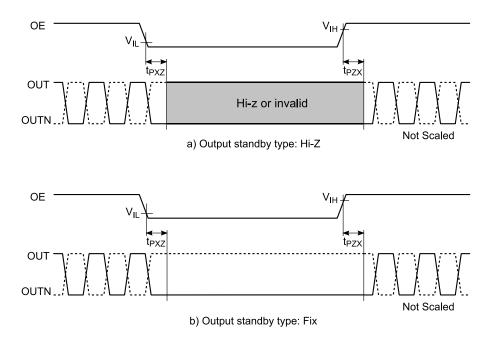

5.5. LVPECL

Table 5.7. LVPECL


 V_{CC} = 3.3 V ± 10% or 2.5 V ± 5%, GND = 0 V, Ta = -40 ~ +85 °C

Item	Symbol	Conditions	Min.	Тур.	Max	Units
Output load condition	L_PECL	Outputs terminated with 50 Ω	utputs terminated with 50 Ω to V_{CC} – 2.0 V			
Rise time*1	t _R	-	-	-	400	ps
Fall time ^{*1}	t _F	-	-	-	400	ps
Symmetry*1 (duty cycle)	SYM	-	45	50	55	%
High level output voltage	V_{OH}	-	V _{CC} - 1.025	$V_{CC} - 0.95$	-	V
Low level output voltage	V _{OL}	-	-	V _{CC} - 1.7	V _{CC} – 1.62	V
OE disable delay time*1	t _{PXZ}	-	-	-	100	ns
OE enable delay time*1	t _{pZX}	-	-	-	10	μs

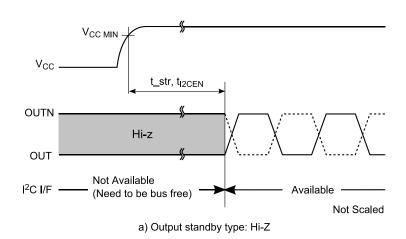

Note: OUT and OUTN are not used as single end. Note 1: Guaranteed by design, characterization, and/or simulation only and not production tested.

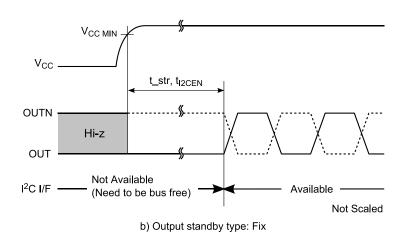
Output Rise/Fall Time, Symmetry (duty cycle)

Output AC Test Circuit

OE function (Active High)

5.6. Startup


Table 5.8. Startup


 V_{CC} = 3.3 V ± 10% or 2.5 V ± 5%, GND = 0 V, Ta = -40 ~ +85 °C

Item	Symbol	Conditions	Min.	Тур.	Max	Units
V _{CC} ramp rate ^{*1}	R _{VCC}	V _{CC} from 0 V to V _{CC MIN} .	5 x 10 ⁻⁶	-	3	s
Startup time*2	t_str	-	-	-	5	ms
I ² C I/F enable time ^{*2}	t _{I2CEN}	-	-	-	5	ms

Note 1: V_{CC} ramp must be monotonic.

Note 2: Guaranteed by design, characterization, and/or simulation only and not production tested.

Start-Up Time

6. Functions

6.1. Overview

The VG7050ECN has a VCXO, PLL and output buffer unit. The VCXO unit is composed of a fundamental mode crystal that generates stable reference clock for PLL. Kv of VCXO can be programmed via I²C interface. For best phase noise performance, Kv can be selected the lowest setting that meets the requirements of the application. The output frequency is determined by the feedback divider and the output divider. The feedback divider can offer not only integer setting that achieves lower jitter, but also fractional setting that provides frequency in ppb resolution.

The device's default output frequency and Kv are set at the factory and can be reprogrammed via I²C bus. Once the device is powered down, it will return to its factory-set default setting.

6.2. Setting of the Kv

The VG7050ECN has Voltage Control function in its crystal oscillation circuit. The Kv value, pull range sensitivity of the V_C function, is the factory default value when the device is powered on. It can be reprogrammed by setting the KV.KV register through I^2C bus.

		· ·
Register	Setting	Kv *
KV.KV	0xC ~ 0xF	Forbidden
	0xB	Min
	0x0	Max

Table 6.1. Setting of the Kv

6.3. Setting of the Output Frequency

6.3.1. Calculation of the Frequency Setting

The output frequency (f_O) is determined by the VCO frequency (f_{VCO}) and the output divider (ODIV). This is shown:

$$f_O = \frac{f_{VCO}}{ODIV} \tag{1}$$

The VCO frequency must be from 2.55 GHz to 3.20 GHz. Base on the relation between this limit and the formula (1), ODIV is calculated from the $f_{\rm O}$ as shown in Table 6.2.

The VCO frequency is determined by the reference frequency (f_{REF}) from the VCXO and the feedback divider (N). The feedback divider (N) consists of both a 6-bit integer portion (N_{INT}) and a 24-bit fractional portion (N_{FRAC}) and provides the means for high-resolution frequency generation. The VCO frequency is calculated by:

$$f_{VCO} = f_{REF} \times N$$

$$= f_{REF} \times \left(N_{INT} + \frac{N_{FRAC}}{2^{24}} \right)$$
(2)

^{*}Please refer to the Kv values for the Table 5.6

f ₀ [MHz]	ODIV	ODIV.ODIV register setting
50 ~ 57	56	0xF
53 ~ 67	48	0xE
64 ~ 80	40	0xD
80 ~ 100	32	0xC
91 ~ 114	28	0xB
106 ~ 133	24	0xA
128 ~ 160	20	0x9
159 ~ 200	16	0x8
182 ~ 229	14	0x7
213 ~ 267	12	0x6
255 ~ 320	10	0x5
319 ~ 400	8	0x4
364 ~ 457	7	0x3
425 ~ 533	6	0x2
510 ~ 640	5	0x1

Table 6.2. fo and ODIV

The output frequency (f_O) is shown:

$$f_{O} = \frac{f_{VCO}}{ODIV}$$

$$= f_{REF} \frac{\left(N_{INT} + \frac{N_{FRAC}}{2^{24}}\right)}{ODIV}$$
(3)

For example if the reference frequency (f_{REF}) is 114.144 MHz and the output frequency is 120MHz, ODIV is fixed to "24" from the Table 6.2. The setting of N, N_{INT} , N_{FRAC} is calculated:

$$N = N_{INT} + \frac{N_{FRAC}}{2^{24}} = \frac{f_{OUT} \times ODIV}{f_{REF}} = \frac{120.0 \times 10^6 \times 24}{114.1444444 \times 10^6} = 25.231188535690308$$

$$N_{INT} = floor(N) = floor(25.231188535690308) = 25$$

$$N_{FRAC} = (N - N_{int}) \times 2^{24} = (25.231188535690308 - 25) \times 2^{24}$$

$$= 0.231188535690308 \times 2^{24}$$

$$= 3878700 = 0x3B2F2C$$
(6)

Depending on the fo the ODIV may become two values.

For example if the fo is 380 MHz, ODIV can be 7 or 8. Even if either of the ODIV values is selected, the same fo can be gained by setting NINT and NFRAC but phase noise included in the output signal become different. Please evaluate the performances fully in your actual usage environment and select the ODIV.

 N_{FRAC} is a 24-bit value. By setting 6 bit of N_{INT} and 20 bit of N_{INT} frequency resolution is 10 ppb order. The lower 4 bit of the rest of the N_{FRAC} corresponds to the setting of the frequency in 1ppb order. By setting these values, the output frequency is changed very small, but the spurious of the output signal may change significantly. Please evaluate the performances fully in your actual usage environment and fix the lower 4 bit of the N_{FRAC} .

6.3.2. Reconfiguring Frequency Setting

The VG7050ECN has four sets of "user register", "user register selector" and a "PLL register". The user register stores ODIV, NINT and NFRAC. It can be reprogrammed at any time when I²C bus is available. The user resister selector is controlled by FSEL0 and FSEL1 pins. It selects one frequency settings (ODIV, NINT and NFRAC) from the four sets of user register. The PLL register is connected directly to the PLL.

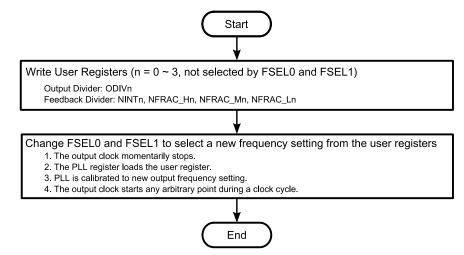
When the device is powered on, the default value programmed in the non-volatile memory is automatically fetched to the four sets of user register. The user register selector selects frequency settings from them, and then it is loaded by the PLL register.

After power up, the user may change output frequency selection from the factory programmed four frequency by changing FSEL0 and FSEL1 pins. When VG7050ECN detect the change of FSEL0 and FSEL1 pins, clock output momentary stops. The, the PLL register is updated by the user register selected by FSEL0 and FSEL1 pins, PLL calibration is executed, and then clock output resumes at new frequency.

Table 6.3 Frequency selection by FSEL0 and FSEL1 pins

Int	out	Eroguanov Salaat	Llear Pagistor					
FSEL1	FSEL0	Frequency Select	User Register					
0	0	Frequency 0	ODIVO, NINTO, NFRAC_HO, NFRAC_MO, NFRAC_LO					
0	1	Frequency 1	ODIV1, NINT1, NFRAC_H1, NFRAC_M1, NFRAC_L1					
1	0	Frequency 2	ODIV2, NINT2, NFRAC_H2, NFRAC_M2, NFRAC_L2					
1	1	Frequency 3	ODIV3, NINT3, NFRAC_H3, NFRAC_M3, NFRAC_L3					

The user may change output frequency different than that programmed by the factory. VG7050ECN has two frequency change method, a) clock stops momently and PLL calibration, b) clock output continuously and no PLL calibration. With method "a", new output frequency can be set as any frequency. With method "b", the change of output frequency is limited within ±500 ppm.


6.3.2.1. Output Frequency Change to Any Frequency with PLL Calibration

The frequency change procedure is shown in Figure 6.1.

If the user write a different ODIVn, NINTn, NFRAC_Hn, NFRAC_Mn, NFRAC_Ln; n = 0, 1, 2 or 3, the user writes to a configuration which is not currently selected by FSEL0 and FSEL1 pins and then change to that configuration after the I^2 C transaction has completed. Changing the FSEL0 and FSEL 1 pins controls results in an immediate output clock halt, PLL calibration, and then output clock resumes at new frequency.

If FSEL0 and FSEL1 pins are fixed, the user writes to a configuration which is currently selected by FSEL0 and FSEL1 pins, and writes 1 to the PLL_CTRL.NEW_FREQ register. It also results in an immediate output clock halt, PLL calibration, and then output clock resumes at new frequency.

Both method results in PLL calibration for new output frequency, optimum jitter performance is achieved. These methods establish a new center frequency. Circuitry receiving a clock from the VG7050ECN that is sensitive to glitches or runt pulses may have to be reset once this process is complete.

a) Change a frequency setting and select it by FSEL0, FSEL1

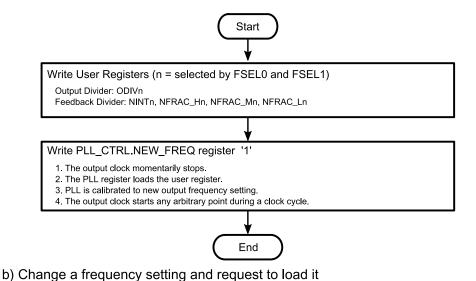


Figure 6.1 Frequency change procedure with PLL calibration

6.3.2.2. Output Frequency Small Change without PLL Calibration

The user may change output frequency without clock pause. With this method, PLL calibration is not executed and frequency change window is limited within ±500 ppm from the center frequency as shown in Figure 6.2

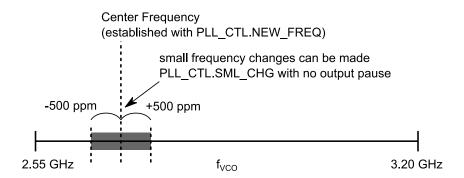


Figure 6.2 VCO frequency range

Frequency change procedure is shown in Figure 6.3. The user may write new frequency settings to the user resister (NINT, NFRAC only) which is selected by FSEL0 and FSEL1 pins, and then the user write 1 to the PLL_CTRL.SML_CHG register. It results in a change of output frequency without clock output pause.

PLL calibration is not preceded in this method; therefore the jitter performance may not be optimum. During output frequency change, the output frequency might temporarily be outside the frequency band between old frequency and new frequency.

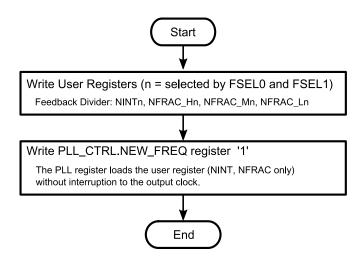


Figure 6.3 Frequency change procedure without PLL calibration

6.4. I²C Interface

6.4.1. Connection of I²C Bus

The VG7050ECN can be used as a slave device of I^2C bus. The I^2C bus is composed of serial data line (SDA) and serial clock (SCL). The lines need to be both pulled up by external resistors. Electric level of the pull up resistor need to be above the Vcc so these are recommended to be pulled up to the Vcc. Also slave address of the slave devices on the I^2C bus must be unique.

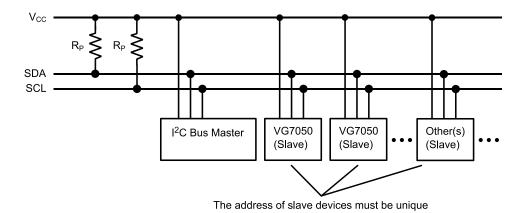


Figure 6.4. Connection of I²C bus

6.4.2. I²C Bus Protocols Supported by the VG7050ECN

12C bus protocols that can be supported by the VG7050ECN are shown in the below Table 6.4.

Table 6.4. I²C bus protocols supported by the VG7050ECN

Feature	VG7050ECN
START condition	✓
STOP condition	✓
Acknowledge	✓
Clock stretching	n/a
7-bit slave address	✓
10-bit slave address	n/a
General Call address	n/a
Software Reset	n/a
Device ID	n/a

n/a = not applicable

6.4.3. START Condition and STOP Condition

Data communication on the I²C bus starts by START condition (S). The START condition means that SDA changes from "H" to "L" when SCL is at "H". When the START condition occurs, I²C bus becomes busy.

Data communication on the I²C bus can be terminated by STOP condition (P). The STOP condition means that SDA changes from "L" to "H" when SCL is at "H". When the STOP condition occurs, I²C bus becomes free.

When I^2C bus is busy, instead of STOP condition START condition can be generated, which is called repeated START condition (Sr). The I^2C bus maintains busy status. If the START or repeated START condition is received, I^2C interface circuit of the VG7050ECN is always reset, even if these START conditions are not positioned according to the proper format.

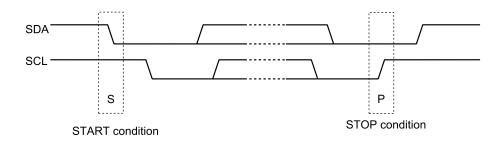


Figure 6.5. START and STOP condition

6.4.4. Byte Format and ACK/NACK

Data transmission and reception on I^2C is done in a unit of 8 bit = 1 byte. Each byte is followed by acknowledge bit. Data is transmitted by MSB first. Including acknowledge bit all SCL pulses are generated by Master.

The Acknowledge signal (ACK: A) is defined as follows: the transmitter (master transmitter or slave transmitter) releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line "L" and it remains stable "L" during the "H" period of this clock pulse. When SDA remains "H" during this ninth clock pulse, this is defined as the Not Acknowledge signal (NACK: \overline{A}).

6.4.5. Read/Write to Register

Procedure of Read/Write to register is shown in the below Figure 6.6. The VG7050ECN can Read/Write single or multi byte data. The VG7050ECN slave address is 0x37.

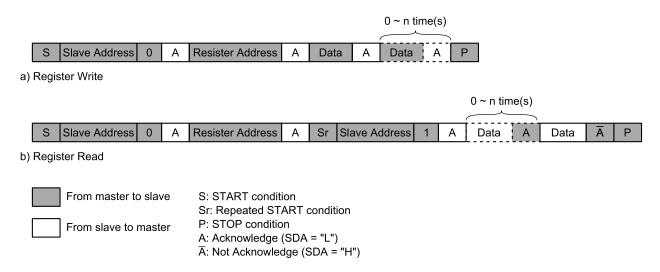


Figure 6.6. Read/Write from/to register by I²C bus

7. Registers

7.1. List of Registers

A alalma c -	Register				Е	Bit				
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x00	P_CODE0		0x46 (Ascii 'F', Read Only)							
0x01	P_CODE1			(0x43 (Ascii 'C	C', Read Only)			
0x02	REV				0x01 (Re	ead Only)				
0x03	ID_CODE0				0x01 (Re	ead Only)				
0x04	ID_CODE1	-			I	D (Read Only	/)			
0x10	ODIV0	-	-	-	-		O	DIV		
0x11	NINT0	-	-			NI	NT			
0x12	NFRAC_H0				NFR	AC_H				
0x13	NFRAC_M0				NFRA	AC_M				
0x14	NFRAC_L0				NFR	AC_L				
0x15	PLL_CTRL0	OE_REG	1	-	-	VCTUNE_D IS	NEW_FRE Q	SML_CHG	NVM_RES TORE	
0x16	FSEL_STAT0	-	-	-	-	FSEL (Read Only		ead Only)		
0x20	ODIV1	-	ODIV							
0x21	NINT1	-	-			NI	NT			
0x22	NFRAC_H1				NFR	AC_H				
0x23	NFRAC_M1				NFRA	AC_M				
0x24	NFRAC_L1				NFR	AC_L				
0x30	ODIV2	-	-	-	-		10	OIV		
0x31	NINT2	-	-			NI	NT			
0x32	NFRAC_H2				NFR	AC_H				
0x33	NFRAC_M2				NFRA	AC_M				
0x34	NFRAC_L2				NFR	AC_L				
0x40	ODIV3	-	ı	-	-		10	OIV		
0x41	NINT3	-	- NINT							
0x42	NFRAC_H3	NFRAC_H								
0x43	NFRAC_M3	NFRAC_M								
0x44	NFRAC_L3		NFRAC_L							
0x50	PLL_CTRL1	OE_REG	-	-	-	VCTUNE_D IS	NEW_FRE Q	SML_CHG	NVM_RES TORE	
0x51	FSEL_STAT1	-	-	-	-	-	-	FSEL (R	ead Only)	
0x5A	KV	-								

Note: Please do not write values in the addresses that are not mentioned in this list. Please write 0 in the bit that is not defined.

7.2. Product Code 0 Register

A dalmaga	Register				В	Bit			
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x00	P_CODE0		P_CODE						
Туре					R	/O			
Default		0	1	0	0	0	1	1	0

Bit	Name	Function
7:0	P_CODE	Product code (0x46) Ascii Code 'F'

7.3. Product Code 1 Register

Addross	Register				В	Bit			
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x01	P_CODE1		P_CODE						
-	Туре				R	/O			
Default		0	1	0	0	0	0	1	1

Bit	Name	Function
7:0	P_CODE	Product code (0x43) Ascii Code 'C'

7.4. Revision Code Register

Addross	Register				В	Bit			
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x02	REV				RI	EV			
Туре					R	/O			
Default		0	0	0	0	0	0	0	1

I	Bit	Name	Function
	7:0	REV	Revision code 0x01

7.5. ID Code 0 Register

Address	Register				Е	Bit			
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x03	ID_CODE0		ID						
	Туре				R	/O			
Default		0	0	0	0	0	0	0	1

Bit	Name	Function
7:0	ID	ID code 0x01

7.6. ID Code 1 Register

A ddwaaa	Register				В	Bit				
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x04	ID_CODE1	-	ID							
	Type -		R/O							
Default -		-	Depend on the product							

Bit	Name	Function					
7	Reserved	Always read as 0.					
6:0	ID	ID code Lower 7 bit value of the parameter designator (SM20xxxx)					

7.7. ODIV Register

Address	Register	Bit								
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x10	ODIV0									
0x20	ODIV1	_					ODIV			
0x30	ODIV2	-	-	-	-		OL	ODIV		
0x40	ODIV3									
	Туре	ı			1	R/W				
	efault	1	1	1	ı	NVM				

Bit	Name	Function						
7:4	Reserved	Please write 0 at	Please write 0 at all the times.					
3:0	ODIV	0x0: 4 0x1: 5 0x2: 6 0x3: 7	0x4: 8 0x5: 10 0x6: 12 0x7: 14	0x8: 16 0x9: 20 0xA: 24 0xB: 28	0xC: 32 0xD: 40 0xE: 48 0xF: 56			

7.8. NINT Register

Address	Register		Bit							
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x11	NINT0									
0x21	NINT1			NINT						
0x31	NINT2	-	-							
0x41	NINT3									
	Туре	ı	ı	- R/W						
)efault	-	-			N۱	/M			

Bit	Name		Function						
7:6	Reserved	Please write 0 at all t	he times.						
5:0	NINT	Integer portion of the	nteger portion of the feedback divider (N _{INT})						
		Se	Setting Description						
		$0x00 \sim 0x11$,	0d ~ 17d	This setting shall not be configured.					
		0x12	18d	N _{INT} = 18					
		0x20 32d N _{INT} = 32							
		0x21 ~ 0x3F	33d ~ 63d	This setting shall not be configured.					

7.9. NFRAC Register

Address	Register				В	Bit			
Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x12	NFRAC_H0								
0x22	NFRAC_H1		NED 4 0(00.40)						
0x32	NFRAC_H2		NFRAC[23:16]						
0x42	NFRAC_H3								
0x13	NFRAC_M0								
0x23	NFRAC_M1	NFRAC[15:8]							
0x33	NFRAC_M2				INI IVA	J[13.0]			
0x43	NFRAC_M3								
0x14	NFRAC_L0								
0x24	NFRAC_L1				NEDA	C[7:0]			
0x34	NFRAC_L2	NFRAC[7:0]							
0x44	NFRAC_L3								
	Туре			•	R/	W	•	•	
)efault	NVM							

Bit	Name	Function
7:0	NFRAC[23:16] NFRAC[15:8] NFRAC[7:0]	Fractional portion of the feedback divider (N _{FRAC}) E.g. Setting in case N _{FRAC} is 0x123456 NFRAC_H = 0x12 NFRAC_M = 0x34 NFRAC_L = 0x56

7.10. PLL Control Register

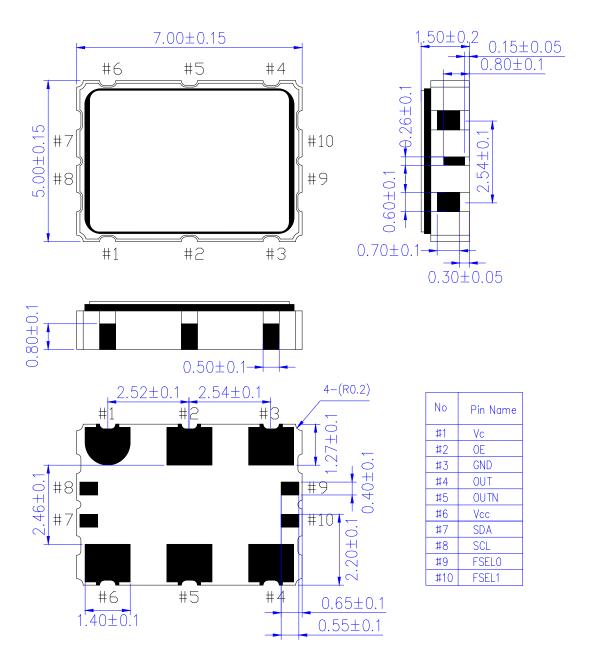
Address Register		Bit								
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x15 0x50	PLL_CTRL0 PLL_CTRL1	OE_REG	-	-	-	VCTUNE_ DIS	NEW_FR EQ	SML_CH G	NVM_RE STORE	
	Туре	R/W	-	-	-	R/W	R/W	R/W	R/W	
	efault	0	-	-	-	0	0	0	0	

PLL_CTRL0 and PLL_CTRL1 is an address shared register.

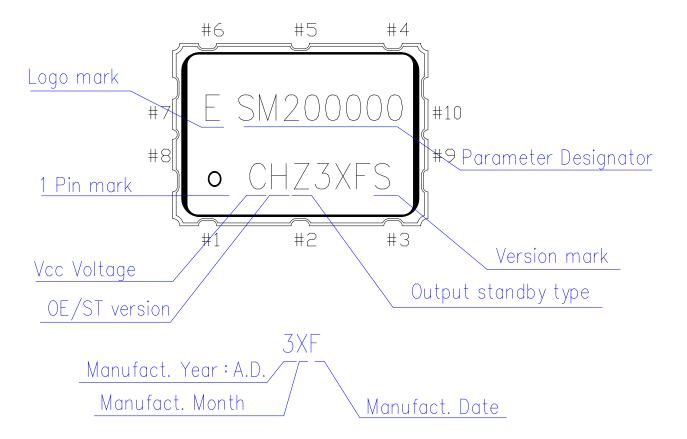
Bit	Name			Function					
7	OE_REG		Output enable register function LVPECL output buffer is enable when OE pin or this register is set as 1/High as shown below table.						
			LVI	PECL output buff	er				
			OE pin (Activ	e High) status		e Low) status			
			H	L	H	L			
		OE_REG 1 value 0	Enable Enable	Enable Disable	Enable Disable	Enable Enable			
6:4	Reserved	Please write 0 at all the							
3	VCTUNE_DIS		VC function (VCXO) 0: VC function is valid 1: VC function is invalid						
2	NEW_FREQ	New frequency applied By writing 1, frequen and output frequen change of the output Note: Please refer	ency setting confi cy is updated acc ut frequency and	cordingly. This bit PLL calibration is	is automatically s completed.	cleared once			
1	SML_CHG	New frequency applied By writing 1, frequent and output frequent change of the output Note: Please refer	ency setting confi cy is updated acc ut frequency is do	gured in user reg cordingly. This bit one.	is automatically	cleared once			
0	NVM_RESTORE	Restore user register f By writing 1, defaul (NVM). This bit is a Note: PLL register user register write 0x05 to written as 1)	It value of user re outomatically clean is not updated or or and the PLL regon or PLL_CTRL regi	red once the reg	ister restore is do his bit. In order to equency) at the sa	one. o initialize the ame time, please			

7.11. FSEL Status Register

Address Register		Bit								
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x16	FSEL_STAT0							EC	EI	
0x52	FSEL_STAT1	-	-	-	-	-	_	FSEL		
	Туре		-	-	-	-	-	R	′ O	
Default		-	-	-	-	-	-		-	

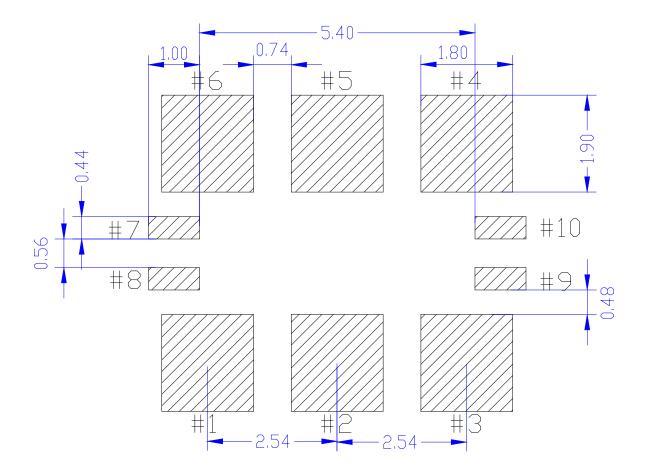

Bit	Name	Function
7:2	Reserved	Please write 0 at all the times.
1:0	FSEL	FSEL0, FSEL1 settings This register shows the current number of frequency selection (0 \sim 3). If FSEL0 or FSEL1 pin is changed, it is not updated immediately. After t_{SET2} , VG7050ECN outputs new frequency and this resister is updated.

7.12. KV Register


Address	Register	Bit							
Address	name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x5A	KV	-	1	1	-	KV			
Туре		-	-	-	-	R/W			
Default		-	-	-	-	NVM			

Bit	Name	Function			
7:4	Reserved	Please write 0 at all the times.			
3:0	KV	Kv setting of VCXO Please refer to electrical characteristics spec (Table 5.6) for relation between setting and Kv.			

8. Dimensions


9. Device Marking

 The above marking layout shows only marking contents and their approximate position, not actual font, size and exact position.

10. Soldering Pattern

Example of patterning design indicated as follows. In an actual design, please consider mounting density, the reliability of soldering, etc. and check whether performance is optimal.

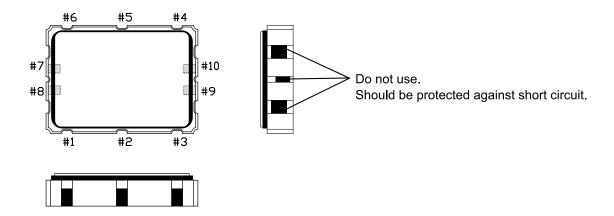
11. Application Note

- 1. This device contains a crystal resonator, so please do not expose to excessive shock or vibration. The internal crystal resonator might be damaged in case that too much shock or vibration is produced mechanically. Be sure to check your machine condition in advance.
- 2. This device is made with C-MOS IC. Please take necessary precautions to prevent damage due to electrostatic discharge.
- 3. We recommend to use and store under room temperature and normal humidity to secure frequency accuracy and prevent moisture.
- 4. We will announce the discontinuance and switch to our successor before six months or more.
- 5. Recommendation reflow times are less than 3 times.

When there was a soldering error, please do alteration with a soldering iron. In this case, the iron ahead is equal to or less than +350 °C and asks within 5 s.

In case that this device is reflow soldered on the back side of your circuit board, please carefully verify the device is properly secured to prevent coming detached from card.

Soldering method

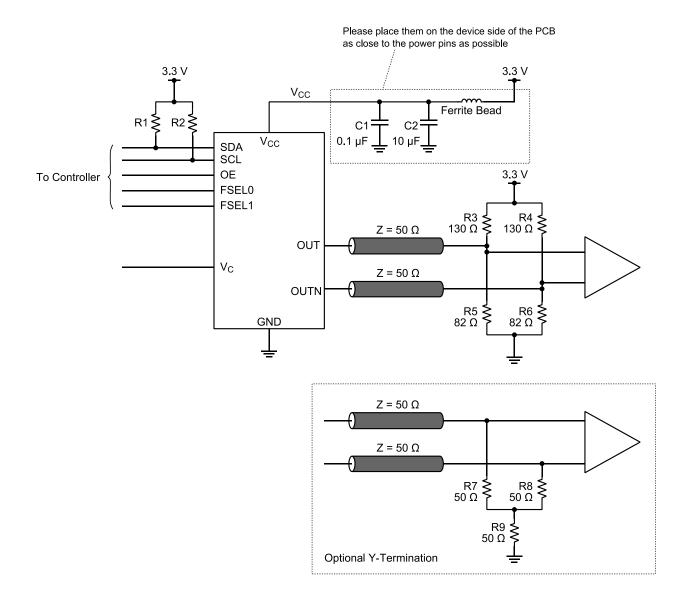

Soldering method	Good or No good		
Reflow soldering (top side)	Good		
Reflow soldering (back side)	Please carefully verify the device is properly secured to prevent coming detached from card.		
Solder pot (static solder pot/flow solder pot)	No good		
Iron soldering	Good		

- 6. Ultrasonic cleaning can be used on this product, however, since the oscillator might be damaged under some conditions, please exercise caution in advance.
- 7. Protection against periodically mechanical vibration

While there is any given shock or mechanical vibration periodically to crystal products, such as, a cooling fan, a piezo sounder, a piezo buzzer, and a speaker to crystal products, output frequency and amplitude can be changed. Especially the quality of telecommunication equipment could be affected by this phenomenon. Although Epson's crystal products are designed to minimize the effect of mechanical vibration, we recommend checking them in advance.

8. The metal part of the surface (metal cap) is connected to GND #3 pin. Please take necessary precautions to prevent short circuit to GND by contact with the metal cap.

Side leads as shown below are connected to IC internally. Therefore be careful for short or a fall of insulation resistance.


- 10. V_{CC} and GND pattern shall be as large as possible so that high frequency impedance shall be small.
- 11. Seiko Epson doesn't recommend to power on from intermediate electric voltage or extreme fast power on. Those powering conditions may cause no oscillation or abnormal oscillation.
- 12. Please design the output lines by characteristic impedance 50 Ω and try to make the output lines as short as possible. A long output line may cause irregular output. Other high level signal lines may cause incorrect operation, so please do not place high-level signal line close to this device.
- 13. If OE (Active High), SDA or SCL pin is not used, please connect them to V_{CC}. In order to suppress surge, resister may be used for OE pin.
- 14. If output pin is connected to the ground when supply voltage is applied to product, the internal elements can be destroyed. So please use the products that always have connection with load resistance.

Example of VG7050ECN schematic layout

This figure shows an example of this product's application schematic.

As with any high speed analog circuitry, the power supply pins for VG7050ECN are vulnerable to noise. In order to achieve optimum jitter performance, power isolation with filter device is required for power supply pins.

In order to achieve best performance of the power isolation filter, it is recommended that the filter composing devices is placed on the device side of the PCB as close to the power pins as possible. The component value of this filter is just an example, it may have to be adjusted.

Application Manual

AMERICA

EPSON ELECTRONICS AMERICA, INC.

HEADQUARTER 214 Devcon Drive, San Jose, CA 95112, U.S.A.

Phone: (1) 800-228-3964 FAX: (1) 408-922-0238

Chicago Office 1827 Walden Office Square. Suite 450 Schaumburg, IL 60173, U.S.A

Phone: (1) 847-925-8350 Fax: (1) 847-925-8965

1960 E. Grand Ave., 2nd Floor, El Segundo, CA 90245, U.S.A. Phone: (1) 800-249-7730 (Toll free) : (1) 310-955-5300 (Main) El Segundo Office

Fax: (1) 310-955-5400

EUROPE

EPSON EUROPE ELECTRONICS GmbH

HEADQUARTER

Riesstrasse 15, 80992 Munich, Germany Phone: (49)-(0) 89-14005-0 Fax: (49)-(0) 89-14005-110

http://www.epson-electronics.de

ASIA

EPSON (China) CO., LTD.

7F, Jinbao Building No.89 Jinbao Street Dongcheng District, Beijing, China, 100005 Phone: (86) 10-8522-1199 Fax: (86) 10-8522-1120

Shanghai Branch

http://www.epson.com.cn/ed/ High-Tech Building, 900 Yishan Road Shanghai 200233, China Phone: (86) 21-5423-5577 Fax: (86) 21-5423-4677 12/F, Dawning Mansion,#12 Keji South Road, Hi-Tech Park, Shenzhen, China Phone: (86) 755-2699-3828 Fax: (86) 755-2699-3838

Shenzhen Branch

EPSON HONG KONG LTD.

Unit 715-723 7/F Trade Square, 681 Cheung Sha Wan Road, Kowloon, Hong Kong Phone: (86) 755-2699-3828 (Shenzhen Branch) Fax: (86) 755-2699-3838 (Shenzhen Branch)

http://www.epson.com.hk

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No.7, Song Ren Road, Taipei 110 Phone: (886) 2-8786-6688 Fax: (886) 2-8786-6660 http://www.epson.com.tw/ElectronicComponent

EPSON SINGAPORE PTE. LTD.

No 1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633. Phone: (65) 6586-5500 Fax: (65) 6271-3182

epson.com.sg/epson_singapore/electronic_devices/electronic_devices.page

SEIKO EPSON CORPORATION KOREA Office
5F, KLI 63 Building, 60 Yoido-dong, Youngdeungpo-Ku, Seoul, 150-763, Korea Phone: (82) 2-784-6027 Fax: (82) 2-767-3677

http://www.epson-device.co.kr

SEIKO EPSON CORPORATION

Distributor

Electronic devices information on WWW server

http://www5.epsondevice.com/en/quartz/index.html